Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36358467

ABSTRACT

Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) ß and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCß/MAPK/KLF5 axis.

2.
J Biomed Sci ; 29(1): 31, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538534

ABSTRACT

BACKGROUND: Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fibrosis, the underlying molecular mechanisms remain unclear. Here, the role of carbohydrate-responsive element-binding protein (ChREBP) in LPA-induced renal fibrosis and the underlying mechanisms were investigated. METHODS: Eight-week-old wild-type and db/db mice were intraperitoneally injected with the vehicle or an LPAR1/3 antagonist, ki16425 (10 mg/kg), for 8 weeks on a daily basis, following which the mice were sacrificed and renal protein expression was analyzed. SV40 MES13 cells were treated with LPA in the presence or absence of ki16425, and the expression of ChREBP and fibrotic factors, including fibronectin, TGF-ß, and IL-1ß, was examined. The role of ChREBP in the LPA-induced fibrotic response was investigated by ChREBP overexpression or knockdown. The involvement of Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ligase, in LPA-induced expression of ChREBP and fibrotic factors was investigated by Smurf2 overexpression or knockdown. To identify signaling molecules regulating Smurf2 expression by LPA, pharmacological inhibitors such as A6370 (Akt1/2 kinase inhibitor) and Ly 294002 (PI3K inhibitor) were used. RESULTS: The renal expression of ChREBP increased in diabetic db/db mice, and was reduced following treatment with the ki16425. Treatment with LPA induced the expression of ChREBP and fibrotic factors, including fibronectin, TGF-ß, and IL-1ß, in SV40 MES13 cells, which were positively correlated. The LPA-induced expression of fibrotic factors increased or decreased following ChREBP overexpression and knockdown, respectively. The production of reactive oxygen species (ROS) mediated the LPA-induced expression of ChREBP and fibrotic factors, and LPA decreased Smurf2 expression via Traf4-mediated ubiquitination. The LPA-induced expression of ubiquitinated-ChREBP increased or decreased following Smurf2 overexpression and knockdown, respectively. Additionally, Smurf2 knockdown significantly increased the expression of ChREBP and fibrotic factors. The pharmacological inhibition of Akt signaling suppressed the LPA-induced alterations in the expression of ChREBP and Smurf2. CONCLUSION: Collectively, the results demonstrated that the ROS/Akt-dependent downregulation of Smurf2 and the subsequent increase in ChREBP expression might be one of the mechanisms by which LPA induces mesangial cell fibrosis in DN.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Diabetic Nephropathies , Lysophospholipids , Mesangial Cells , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Down-Regulation , Female , Fibronectins/metabolism , Fibrosis , Male , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TNF Receptor-Associated Factor 4/metabolism , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...