Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 9: 803, 2018.
Article in English | MEDLINE | ID: mdl-30013580

ABSTRACT

Cellular calcium acts as a second messenger and regulates diverse developmental events and stress responses. Cytosolic calcium has long been considered as an important regulator of senescence, however, the role of Ca2+ in plant senescence has remained elusive. Here we show that the Calmodulin 1 (CaM1) gene, which encodes Ca2+-binding protein calmodulin 1, positively regulates leaf senescence in Arabidopsis. Yellowing of leaves, accumulation of reactive oxygen species (ROS), and expression of the senescence-associated gene 12 (SAG12) were significantly enhanced in CaM1 overexpression plants. In contrast, abscisic acid (ABA)-triggered ROS production and stomatal closure were reduced in amiRNA-CaM1 plants. We found a positive-feedback regulation loop among three signaling components, CaM1, RPK1, and RbohF, which physically associate with each other. RPK1 positively regulates the expression of the CaM1 gene, and the CaM1 protein, in turn, up-regulates RbohF gene expression. Interestingly, the expression of CaM1 was down-regulated in rbohD, rbohF, and rbohD/F mutants. We show that CaM1 positively regulates ROS production, leaf senescence, and ABA response in Arabidopsis.

2.
Transgenic Res ; 11(3): 249-56, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12113457

ABSTRACT

A late-flowering transgenic radish has been produced by the expression of an antisense GIGANTEA (GI) gene fragment using a floral-dip method. Twenty-five plants were dipped into a suspension of Agrobacterium carrying a 2.5 kb antisense GI gene fragment from Arabidopsis, along with the gusA and bar reporter genes, all under the control of a CaMV 35S promoter. From a total of 1462 seeds harvested from these floral-dipped plants, 16 Basta-resistant T1 plants were found to have GUS activity (transformation efficiency of 1.1%). Southern analysis confirmed the integration of one or two copies of the gusA gene in these herbicide-resistant plants. Expression of the GI gene in T1 plants was much reduced compared to both wildtype plants and plants transformed with pCAMBIA3301 (positive control). In the progenies of eleven T1 plants analysed (T2 generation), all lines showed a significant delay in both bolting and flowering times compared to wildtype and positive control plants, and that, the level of GI transcript was inversely proportional to the time of bolting and flowering. At a maximum, bolting and flowering times were delayed by 17 and 18 days respectively, compared to wildtype plants (in positive control plants, the delay was 23 and 26 days, respectively). Ten of the 11 lines exhibited a significant reduction in plant height compared to wildtype and positive control plants. This study provides evidence that down-regulation of the GI gene by co-suppression could delay bolting in a cold-sensitive long-day (LD) plant. Production of late-flowering germplasms of radish may allow this important crop to be cultivated over an extended period and also provide further food to the famine countries of S/E Asia.


Subject(s)
Arabidopsis Proteins/genetics , DNA, Antisense/metabolism , Plants, Genetically Modified/physiology , Raphanus/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/pharmacology , Blotting, Northern , Flowering Tops/drug effects , Flowering Tops/growth & development , Raphanus/drug effects , Raphanus/growth & development , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...