Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Bioact Mater ; 38: 486-498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38779592

ABSTRACT

The rapid development of messenger RNA (mRNA) vaccines formulated with lipid nanoparticles (LNPs) has contributed to control of the COVID-19 pandemic. However, mRNA vaccines have raised concerns about their potential toxicity and clinical safety, including side effects, such as myocarditis, anaphylaxis, and pericarditis. In this study, we investigated the potential of trehalose glycolipids-containing LNP (LNP S050L) to reduce the risks associated with ionizable lipids. Trehalose glycolipids can form hydrogen bonds with polar biomolecules, allowing the formation of a stable LNP structure by replacing half of the ionizable lipids. The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity, respectively. Furthermore, mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity, including in the heart, spleen, and liver, while sustaining gene expression and immune efficiency, compared to conventional LNPs (Con-LNPs). Our findings suggest that LNP S050L, a trehalose glycolipid-based LNP, could facilitate the development of safe mRNA vaccines with improved clinical safety.

2.
NPJ Vaccines ; 9(1): 34, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360752

ABSTRACT

The implications of administration of mRNA vaccines to individuals with chronic inflammatory diseases, including myocarditis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are unclear. We investigated mRNA vaccine effects in a chronic inflammation mouse model implanted with an LPS pump, focusing on toxicity and immunogenicity. Under chronic inflammation, mRNA vaccines exacerbated cardiac damage and myocarditis, inducing mild heart inflammation with heightened pro-inflammatory cytokine production and inflammatory cell infiltration in the heart. Concurrently, significant muscle damage occurred, with disturbances in mitochondrial fusion and fission factors signaling impaired muscle repair. However, chronic inflammation did not adversely affect muscles at the vaccination site or humoral immune responses; nevertheless, it partially reduced the cell-mediated immune response, particularly T-cell activation. These findings underscore the importance of addressing mRNA vaccine toxicity and immunogenicity in the context of chronic inflammation, ensuring their safe and effective utilization, particularly among vulnerable populations with immune-mediated inflammatory diseases.

3.
Vaccine ; 42(2): 69-74, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38097457

ABSTRACT

BACKGROUND: As the nasal mucosa is the initial site of infection for COVID-19, intranasal vaccines are more favorable than conventional vaccines. In recent clinical studies, intranasal immunization has been shown to generate higher neutralizing antibodies; however, there is a lack of evidence on sterilizing immunity in the upper airway. Previously, we developed a recombinant measles virus encoding the spike protein of SARS-CoV-2 (rMeV-S), eliciting humoral and cellular immune responses against SARS-CoV-2. OBJECTIVES: In this study, we aim to provide an experiment on nasal vaccines focusing on a measles virus platform as well as injection routes. STUDY DESIGN: Recombinant measles viruses expressing rMeV-S were prepared, and 5 × 105 PFUs of rMeV-S were administered to Syrian golden hamsters via intramuscular or intranasal injection. Subsequently, the hamsters were challenged with inoculations of 1 × 105 PFUs of SARS-CoV-2 and euthanized 4 days post-infection. Neutralizing antibodies and RBD-specific IgG in the serum and RBD-specific IgA in the bronchoalveolar lavage fluid (BALF) were measured, and SARS-CoV-2 clearance capacity was determined via quantitative reverse-transcription PCR (qRT-PCR) analysis and viral titer measurement in the upper respiratory tract and lungs. Immunohistochemistry and histopathological examinations of lung samples from experimental hamsters were conducted. RESULTS: The intranasal immunization of rMeV-S elicits protective immune responses and alleviates virus-induced pathophysiology, such as body weight reduction and lung weight increase in hamsters. Furthermore, lung immunohistochemistry demonstrated that intranasal rMeV-S immunization induces effective SARS-CoV-2 clearance that correlates with viral RNA content, as determined by qRT-PCR, in the lung and nasal wash samples, SARS-CoV-2 viral titers in lung, nasal wash, BALF samples, serum RBD-specific IgG concentration, and RBD-specific IgA concentration in the BALF. CONCLUSION: An intranasal vaccine based on the measles virus platform is a promising strategy owing to the typical route of infection of the virus, the ease of administration of the vaccine, and the strong immune response it elicits.


Subject(s)
COVID-19 , Measles , Orthopoxvirus , Vaccines , Animals , Cricetinae , SARS-CoV-2 , Measles virus/genetics , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus , Immunization , Nasal Mucosa , Antibodies, Neutralizing , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Administration, Intranasal
4.
J Med Virol ; 95(12): e29309, 2023 12.
Article in English | MEDLINE | ID: mdl-38100632

ABSTRACT

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Human Papillomavirus Viruses , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/prevention & control , RNA, Messenger/genetics , Papillomavirus E7 Proteins/genetics , Mice, Inbred C57BL , Vaccination/methods , Immunization , Uterine Cervical Neoplasms/prevention & control
5.
NPJ Vaccines ; 8(1): 167, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907507

ABSTRACT

We developed a promising mRNA vaccine against severe fever with thrombocytopenia syndrome (SFTS), an infectious disease caused by the SFTS virus that is primarily transmitted through tick bites. Administration of lipid nanoparticle-encapsulated mRNA-Gn successfully induced neutralizing antibodies and T-cell responses in mice. The vaccinated mice were protected against a lethal SFTS virus challenge, suggesting that this mRNA vaccine may be an effective and successful SFTS vaccine candidate.

7.
J Infect Dis ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37711050

ABSTRACT

Developing new adjuvants that can effectively induce both humoral and cellular immune responses while broadening the immune response is of great value. In this study, we aimed to develop GM-CSF- or IL-18-expressing single-stranded RNA (ssRNA) adjuvants based on the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) and tested their efficacy in combination with ovalbumin (OVA) or inactivated influenza vaccines. Notably, cytokine-expressing RNA adjuvants increased the expression of antigen-presenting cell activation markers. Specifically, GM-CSF-expressing RNA adjuvants increased CD4+T cell responses, while IL-18-expressing RNA adjuvants increased CD8+T cell responses in mice when combined with OVA. In addition, cytokine-expressing RNA adjuvants increased the frequency of polyclonal T cells in combination with the influenza vaccine and reduced the clinical illness scores and weight loss of mice after viral challenge. Collectively, our results suggest that cytokine-expressing RNA adjuvants can be applied to protein-based or inactivated vaccines to increase their efficacy.

8.
J Microbiol Biotechnol ; 33(12): 1576-1586, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37644733

ABSTRACT

Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Adenylyl Cyclases , Colforsin/pharmacology , Influenza A Virus, H3N2 Subtype , MAP Kinase Signaling System , Influenza, Human/prevention & control
9.
Nano Lett ; 23(17): 7897-7905, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37435905

ABSTRACT

A new type of microfluidic bioreactor with fibrous micromixers for the ingredient mixing and a long macrochannel for the in vitro transcription reaction was fabricated for the continuous production of mRNA. The diameter of the fibrous microchannels in the micromixers was tuned by using an electrospun microfibrous disc with different microfiber diameters. The micromixer with a larger diameter of fibrous microchannels exhibited a better mixing performance than the others. The mixing efficiency was increased to 0.95 while the mixture was passed through the micromixers, suggesting complete mixing. To demonstrate the continuous production of mRNA, the ingredients for in vitro transcription were introduced into the perfluoropolyether microfluidic bioreactor. The mRNA synthesized by the microfluidic bioreactor had the same sequence and in vitro/in vivo performances as those prepared by the bulk reaction. The continuous reaction in the microfluidic bioreactor with efficient mixing performance can be used as a powerful platform for various microfluidic reactions.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Equipment Design
10.
Exp Mol Med ; 55(7): 1305-1313, 2023 07.
Article in English | MEDLINE | ID: mdl-37430088

ABSTRACT

Since the discovery of messenger RNA (mRNA), there have been tremendous efforts to wield them in the development of therapeutics and vaccines. During the COVID-19 pandemic, two mRNA vaccines were developed and approved in record-breaking time, revolutionizing the vaccine development landscape. Although first-generation COVID-19 mRNA vaccines have demonstrated over 90% efficacy, alongside strong immunogenicity in humoral and cell-mediated immune responses, their durability has lagged compared to long-lived vaccines, such as the yellow fever vaccine. Although worldwide vaccination campaigns have saved lives estimated in the tens of millions, side effects, ranging from mild reactogenicity to rare severe diseases, have been reported. This review provides an overview and mechanistic insights into immune responses and adverse effects documented primarily for COVID-19 mRNA vaccines. Furthermore, we discuss the perspectives of this promising vaccine platform and the challenges in balancing immunogenicity and adverse effects.


Subject(s)
COVID-19 , Pentaerythritol Tetranitrate , Humans , COVID-19/prevention & control , Pandemics , RNA, Messenger/genetics , mRNA Vaccines
11.
NPJ Vaccines ; 8(1): 84, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37271785

ABSTRACT

In response to the COVID-19 pandemic, different types of vaccines, such as inactive, live-attenuated, messenger RNA (mRNA), and protein subunit, have been developed against SARS-CoV-2. This has unintentionally created a unique scenario where heterologous prime-boost vaccination against a single virus has been administered to a large human population. Here, we aimed to analyze whether the immunization order of vaccine types influences the efficacy of heterologous prime-boost vaccination, especially mRNA and protein-based vaccines. We developed a new mRNA vaccine encoding the hemagglutinin (HA) glycoprotein of the influenza virus using the 3'-UTR and 5'-UTR of muscle cells (mRNA-HA) and tested its efficacy by heterologous immunization with an HA protein vaccine (protein-HA). The results demonstrated higher IgG2a levels and hemagglutination inhibition titers in the mRNA-HA priming/protein-HA boosting (R-P) regimen than those induced by reverse immunization (protein-HA priming/mRNA-HA boosting, P-R). After the viral challenge, the R-P group showed lower virus loads and less inflammation in the lungs than the P-R group did. Transcriptome analysis revealed that the heterologous prime-boost groups had differentially activated immune response pathways, according to the order of immunization. In summary, our results demonstrate that the sequence of vaccination is critical to direct desired immune responses. This study demonstrates the potential of a heterologous vaccination strategy using mRNA and protein vaccine platforms against viral infection.

12.
Sci Rep ; 13(1): 8189, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210393

ABSTRACT

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Subject(s)
Adenoviruses, Human , Severe Fever with Thrombocytopenia Syndrome , Viral Vaccines , Animals , Mice , Viral Vaccines/genetics , Vaccination/methods , T-Lymphocytes , Genetic Vectors/genetics , Antibodies, Viral , Immunization, Secondary/methods
13.
Vaccine ; 41(11): 1892-1901, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36792434

ABSTRACT

Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, ß, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Measles virus/genetics , Antibodies, Viral , COVID-19/prevention & control , Measles Vaccine
14.
BMC Cancer ; 22(1): 1041, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36199130

ABSTRACT

BACKGROUND: Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. METHODS: We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. RESULTS: CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. CONCLUSIONS: This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models.


Subject(s)
Cancer Vaccines , Melanoma , Adjuvants, Immunologic , Animals , Cancer Vaccines/therapeutic use , Immunotherapy , Interferon-gamma/genetics , Internal Ribosome Entry Sites , Melanoma/genetics , Melanoma/therapy , Mice , RNA, Viral/genetics
15.
Microbiol Immunol ; 66(11): 529-537, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35979884

ABSTRACT

Following the development of various types of vaccines, the use of adjuvants to boost vaccine efficacy has become a focus of research. Aluminum hydroxide (alum), the most commonly used adjuvant, induces a certain immune response and ensures safety in human trials. However, alum mainly induces only a Th2 response; its Th1 response is weak. Thus, we previously developed a single-stranded ribose nucleic acid (ssRNA) adjuvant that induces a Th1 response through toll-like receptors. Here, we explored whether 10-valent human papilloma virus (HPV)-like particle (VLP) vaccine formulated with ssRNA adjuvant and alum helped to enhance immune response and maintained memory response. The mice were immunized intramuscularly twice at 2 week intervals and were inoculated 4 days after the second boost (after about 1 year). The antibody response and T cell activation were measured by Elispot, ELISA using harvested serum and splenocytes. The 10-valent HPV VLP vaccine formulated with ssRNA adjuvant and alum increased the antigen-specific immune response more than alum used alone. It increased each type-specific IgG1/IgG2a titer, and antigen-specific IFN-γ cells. Furthermore, the ssRNA adjuvant with alum induced memory response. In memory response, each type-specific IgG1/IgG2c, IFN-γ, and IL-6 cytokine, and neutralizing antibodies were increased by the ssRNA adjuvant with alum. Overall, the ssRNA adjuvant with alum induced memory responses and balanced Th1/Th2 responses. The ssRNA adjuvant and alum may help to enhance prophylactic vaccine efficacy.


Subject(s)
Alphapapillomavirus , Papilloma , Papillomavirus Infections , Papillomavirus Vaccines , Vaccines, Virus-Like Particle , Humans , Mice , Animals , Papillomaviridae , Papillomavirus Infections/prevention & control , Adjuvants, Immunologic/pharmacology , Immunoglobulin G , RNA , Mice, Inbred BALB C
16.
Rev Med Virol ; 32(1): e2243, 2022 01.
Article in English | MEDLINE | ID: mdl-33949021

ABSTRACT

Globally, infection by seasonal influenza viruses causes 3-5 million cases of severe illness and 290,000-650,000 respiratory deaths each year. Various influenza vaccines, including inactivated split- and subunit-type, recombinant and live attenuated vaccines, have been developed since the 1930s when it was discovered that influenza viruses could be cultivated in embryonated eggs. However, the protection rate offered by these vaccines is rather low, especially in very young children and the elderly. In this review, we describe the history of influenza vaccine development, the immune responses induced by the vaccines and the adjuvants applied. Further, we suggest future directions for improving the effectiveness of influenza vaccines in all age groups. This includes the development of an influenza vaccine that induces a balanced T helper cell type 1 and type 2 immune responses based on the understanding of the immune system, and the development of a broad-spectrum influenza vaccine that can increase effectiveness despite antigen shifts and drifts, which are characteristics of the influenza virus. A brighter future can be envisaged if the development of an adjuvant that is safe and effective is realized.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Aged , Child , Child, Preschool , Humans , Influenza, Human/prevention & control , Vaccines, Attenuated
17.
Front Microbiol ; 12: 732450, 2021.
Article in English | MEDLINE | ID: mdl-34630356

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape vaccine-induced neutralizing antibodies has indicated the importance of T cell responses against this virus. In this study, we highlight the SARS-CoV-2 epitopes that induce potent T cell responses and discuss whether T cell responses alone are adequate to confer protection against SARS-CoV-2 and describe the administration of 20 peptides with an RNA adjuvant in mice. The peptides have been synthesized based on SARS-CoV-2 spike and nucleocapsid protein sequences. Our study demonstrates that immunization with these peptides significantly increases the proportion of effector memory T cell population and interferon-γ (IFN-γ)-, interleukin-4 (IL-4)-, tumor necrosis factor-α (TNF-α)-, and granzyme B-producing T cells. Of these 20 peptides, four induce the generation of IFN-γ-producing T cells, elicit CD8+ T cell (CTL) responses in a dose-dependent manner, and induce cytotoxic T lymphocytes that eliminate peptide-pulsed target cells in vivo. Although it is not statistically significant, these peptide vaccines reduce viral titers in infected hamsters and alleviate pulmonary pathology in SARS-CoV-2-infected human ACE2 transgenic mice. These findings may aid the design of effective SARS-CoV-2 peptide vaccines, while providing insights into the role of T cells in SARS-CoV-2 infection.

18.
Sci Rep ; 11(1): 11981, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099809

ABSTRACT

There is an unmet need for new influenza vaccine strategies that compensate for impaired vaccine responses in elderly individuals. Here, we evaluated the effectiveness of a single-stranded RNA (ssRNA) as an adjuvant to enhance the efficacy of inactivated influenza vaccine (IIV) in mouse models. Immunization with the ssRNA along with IIV reduced viral titers as well as pathological and inflammatory scores in the lungs after influenza challenge in aged mice. ssRNA induced balanced Th1/Th2 responses with an increase in IgA titers. Moreover, the ssRNA adjuvant markedly increased the frequency of influenza HA-specific T cells and IFN-γ production along with the expression of genes related to innate and adaptive immune systems that could overcome immunosenescence in aged mice. Our findings indicate that ssRNA is an efficient vaccine adjuvant that boosts cellular and humoral immunity in aged mice, demonstrating its potential as a novel adjuvant for currently available influenza virus vaccines for elderly individuals.


Subject(s)
Antibodies, Viral/immunology , Influenza Vaccines/immunology , RNA/metabolism , Vaccines, Inactivated/immunology , Adjuvants, Immunologic/metabolism , Age Factors , Animals , Blood Specimen Collection , Female , Humans , Immunity, Humoral , Influenza Vaccines/metabolism , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Models, Animal , T-Lymphocytes/metabolism , Vaccination , Vaccines, Inactivated/metabolism
19.
Microbiol Immunol ; 65(7): 273-278, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34133044

ABSTRACT

Human papillomavirus (HPV) has more than 100 different types, some of which are associated with cancer. The most common example is that of cervical cancer, which is associated with HPV16 and HPV18. Here, we performed next-generation sequencing (NGS) to type 2436 samples obtained from Korean women to elucidate the correlation between multiple infections, virus types, and cytology. NGS revealed that types 58, 56, and 16 were the most common in high-risk (HR) types, whereas types 90, 54, and 81 were the most common in low-risk (LR) types. The incidence of atypical squamous cells of undetermined significance (ASCUS) or high-grade squamous intraepithelial lesion (HSIL) was 11.45% in single-type cases and 27.17% in multiple infections by the two types of HPV. ASCUS or HSIL was 29.79% in only the HR type multiple infections and 29.81% in mixed high- and low-risk types of multiple infections, whereas it was 18.79% in LR type multiple infections (P ≤ 0.0001). Co-infection by LR-HPV and HR-HPV is therefore more likely to cause cell lesions. Collectively, these results show that the higher the incidence of multiple infections, the greater the frequency of cell lesions. Thus, to predict the clinical symptoms, it would be beneficial to confirm the HPV type and multiple infections using NGS, although this could be relatively expensive.


Subject(s)
Papillomavirus Infections , Atypical Squamous Cells of the Cervix , Female , High-Throughput Nucleotide Sequencing , Humans , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Uterine Cervical Neoplasms
20.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34049881

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...