Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
FEBS Lett ; 598(4): 446-456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38339784

ABSTRACT

Whereas extracellular vesicles (EVs) have been engineered for cargo loading, innovative strategies for it can still be developed. Here, we describe domain 4 (D4), a cholesterol-binding domain derived from perfringolysin O, as a viable candidate for EV cargo loading. D4 and its mutants localized to the plasma membrane and the membranes of different vesicular structures in the cytoplasm, and facilitate the transport of proteins of interest (POIs) into EVs. D4-EVs were internalized by recipient cells analogous to EVs engineered with CD9. Intracellular cargo discharge from D4-EVs was successfully detected with the assistance of vesicular stomatitis virus glycoprotein. This study presents a novel strategy for recruiting POIs into EVs via a lipid-binding domain that ensures content release in recipient cells.


Subject(s)
Bacterial Toxins , Extracellular Vesicles , Hemolysin Proteins , Extracellular Vesicles/metabolism , Cell Membrane , Bacterial Toxins/metabolism , Lipids
2.
Cancer Med ; 12(8): 9760-9773, 2023 04.
Article in English | MEDLINE | ID: mdl-36808261

ABSTRACT

In lung cancer, immune checkpoint inhibitors (ICIs) are often inadequate for tumor growth inhibition. Angiogenic inhibitors (AIs) are required to normalize tumor vasculature for improved immune cell infiltration. However, in clinical practice, ICIs and cytotoxic antineoplastic agents are simultaneously administered with an AI when tumor vessels are abnormal. Therefore, we examined the effects of pre-administering an AI for lung cancer immunotherapy in a mouse lung cancer model. Using DC101, an anti-vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody, a murine subcutaneous Lewis lung cancer (LLC) model was used to determine the timing of vascular normalization. Microvessel density (MVD), pericyte coverage, tissue hypoxia, and CD8-positive cell infiltration were analyzed. The effects of an ICI and paclitaxel after DC101 pre-administration were investigated. On Day 3, increased pericyte coverage and alleviated tumor hypoxia represented the highest vascular normalization. CD8+ T-cell infiltration was also highest on Day 3. When combined with an ICI, DC101 pre-administration significantly reduced PD-L1 expression. When combined with an ICI and paclitaxel, only DC101 pre-administration significantly inhibited tumor growth, but simultaneous administration did not. AI pre-administration, and not simultaneous administration, may increase the therapeutic effects of ICIs due to improved immune cell infiltration.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Animals , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Lung Neoplasms/drug therapy , Carcinoma, Lewis Lung/drug therapy , Immunotherapy , Tumor Microenvironment
3.
Cancer Sci ; 113(11): 3980-3994, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35997541

ABSTRACT

Recent studies have demonstrated a relationship between oral bacteria and systemic inflammation. Endothelial cells (ECs), which line blood vessels, control the opening and closing of the vascular barrier and contribute to hematogenous metastasis; however, the role of oral bacteria-induced vascular inflammation in tumor metastasis remains unclear. In this study, we examined the phenotypic changes in vascular ECs following Streptococcus mutans (S. mutans) stimulation in vitro and in vivo. The expression of molecules associated with vascular inflammation and barrier-associated adhesion was analyzed. Tumor metastasis was evaluated after intravenous injection of S. mutans in murine breast cancer hematogenous metastasis model. The results indicated that S. mutans invaded the ECs accompanied by inflammation and NF-κB activation. S. mutans exposure potentially disrupts endothelial integrity by decreasing vascular endothelial (VE)-cadherin expression. The migration and adhesion of tumor cells were enhanced in S. mutans-stimulated ECs. Furthermore, S. mutans-induced lung vascular inflammation promoted breast cancer cell metastasis to the lungs in vivo. The results indicate that oral bacteria promote tumor metastasis through vascular inflammation and the disruption of vascular barrier function. Improving oral hygiene in patients with cancer is of great significance in preventing postoperative pneumonia and tumor metastasis.


Subject(s)
Breast Neoplasms , Streptococcus mutans , Humans , Mice , Animals , Female , Streptococcus mutans/physiology , Endothelial Cells/metabolism , Signal Transduction , Inflammation/metabolism , Breast Neoplasms/metabolism
4.
Int J Cancer ; 151(6): 944-956, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35608341

ABSTRACT

Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In our study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Endothelial Cells , Lipoproteins, LDL , Neoplasms , Neutrophils , Scavenger Receptors, Class E , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Lipoproteins, LDL/metabolism , Neoplasms/metabolism , Neutrophils/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Tumor Microenvironment
5.
Cancers (Basel) ; 14(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454915

ABSTRACT

This study investigated variations in the relative biological effectiveness (RBE) values among various sarcoma and normal-tissue-derived cell lines (normal cell line) in proton beam and carbon-ion irradiations. We used a consistent protocol that specified the timing of irradiation after plating cells and detailed the colony formation assay. We examined the cell type dependence of RBE for proton beam and carbon-ion irradiations using four human sarcoma cell lines (MG63 osteosarcoma, HT1080 fibrosarcoma, SW872 liposarcoma, and SW1353 chondrosarcoma) and three normal cell lines (HDF human dermal fibroblast, hTERT-HME1 mammary gland, and NuLi-1 bronchus epithelium). The cells were irradiated with gamma rays, proton beams at the center of the spread-out Bragg peak, or carbon-ion beams at 54.4 keV/µm linear energy transfer. In all sarcoma and normal cell lines, the average RBE values in proton beam and carbon-ion irradiations were 1.08 ± 0.11 and 2.08 ± 0.36, which were consistent with the values of 1.1 and 2.13 used in current treatment planning systems, respectively. Up to 34% difference in the RBE of the proton beam was observed between MG63 and HT1080. Similarly, a 32% difference in the RBE of the carbon-ion beam was observed between SW872 and the other sarcoma cell lines. In proton beam irradiation, normal cell lines had less variation in RBE values (within 10%), whereas in carbon-ion irradiation, RBE values differed by up to 48% between hTERT-HME1 and NuLi-1. Our results suggest that specific dose evaluations for tumor and normal tissues are necessary for treatment planning in both proton and carbon-ion therapies.

6.
Cancer Lett ; 528: 76-84, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34973392

ABSTRACT

Cancer cells acquire chemoresistance in hypoxic regions of solid tumors, which is suggested to be at least partly due to reduction of their proliferative activity. However, molecular mechanisms behind it have not been fully elucidated. Here, we revealed the importance of active proteolysis of a histone acetylation reader, ATPase family AAA domain containing 2 (ATAD2), under hypoxia. We found that inactivation of an O2/Fe2+/α-ketoglutarate-dependent dioxygenase triggered ATAD2 proteolysis by the proteasome system upon severe hypoxia in a hypoxia-inducible factors (HIFs)-independent manner. Consistently, ATAD2 expression levels were markedly lower in perinecrotic hypoxic regions in both xenografted and clinical tumor tissues. The ATAD2 proteolysis was accompanied by a decrease in the amount of acetylated histone H3 lysine 27 and inhibited cell cycle progression from the early to late S phase under severe hypoxia. The retardation of S phase progression induced chemoresistance, which was blocked by overexpression of ATAD2. Together, these results indicate that ATAD2 proteolysis upon severe hypoxia induces chemoresistance of cancer cells through heterochromatinization and the subsequent retardation of S phase progression; therefore, inhibition of ATAD2 proteolysis is expected to be a strategy to overcome chemoresistance of hypoxic tumor cells.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle/immunology , Cell Hypoxia/immunology , DNA-Binding Proteins/metabolism , Histones/metabolism , Acetylation , Humans , Proteolysis , S Phase , Transfection
7.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34747365

ABSTRACT

Hypoxia is associated with tumor radioresistance; therefore, a predictive marker for tumor hypoxia and a rational target to overcome it have been sought to realize personalized radiotherapy. Here, we show that serine protease inhibitor Kazal type I (SPINK1) meets these 2 criteria. SPINK1 expression was induced upon hypoxia (O2 < 0.1%) at the transcription initiation level in a HIF-dependent manner, causing an increase in secreted SPINK1 levels. SPINK1 proteins were detected both within and around hypoxic regions of xenografted and clinical tumor tissues, and their plasma levels increased in response to decreased oxygen supply to xenografts. Secreted SPINK1 proteins enhanced radioresistance of cancer cells even under normoxic conditions in EGFR-dependent and nuclear factor erythroid 2-related factor 2-dependent (Nrf2-dependent) manners and accelerated tumor growth after radiotherapy. An anti-SPINK1 neutralizing antibody exhibited a radiosensitizing effect. These results suggest that SPINK1 secreted from hypoxic cells protects the surrounding and relatively oxygenated cancer cells from radiation in a paracrine manner, justifying the use of SPINK1 as a target for radiosensitization and a plasma marker for predicting tumor hypoxia.


Subject(s)
Radiation Tolerance/genetics , Trypsin Inhibitor, Kazal Pancreatic/metabolism , Tumor Hypoxia/physiology , HeLa Cells , Humans , Transfection
8.
Cancers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200019

ABSTRACT

Hypoxia, a characteristic feature of solid tumors, is associated with the malignant phenotype and therapy resistance of cancers. Hypoxia-inducible factor 1 (HIF-1), which is responsible for the metazoan adaptive response to hypoxia, has been recognized as a rational target for cancer therapy due to its critical functions in hypoxic regions. In order to efficiently inhibit its activity, extensive efforts have been made to elucidate the molecular mechanism underlying the activation of HIF-1. Here, we provide an overview of relevant research, particularly on a series of HIF-1 activators identified so far and the development of anticancer drugs targeting them.

9.
Exp Mol Med ; 53(6): 1029-1035, 2021 06.
Article in English | MEDLINE | ID: mdl-34135469

ABSTRACT

Metastasis is not the result of a random event, as cancer cells can sustain and proliferate actively only in a suitable tissue microenvironment and then form metastases. Since Dr. Stephen Paget in the United Kingdom proposed the seed and soil hypothesis of cancer metastasis based on the analogy that plant seeds germinate and grow only in appropriate soil, considerable attention has focused on both extracellular environmental factors that affect the growth of cancer cells and the tissue structure that influences the microenvironment. Malignant tumor tissues consist of not only cancer cells but also a wide variety of other cells responsible for the inflammatory response, formation of blood vessels, immune response, and support of the tumor tissue architecture, forming a complex cellular society. It is also known that the amounts of oxygen and nutrients supplied to each cell differ depending on the distance from tumor blood vessels in tumor tissue. Here, we provide an overview of the tumor microenvironment and characteristics of tumor tissues, both of which affect the malignant phenotypes and radioresistance of cancer cells, focusing on the following keywords: diversity of oxygen and nutrient microenvironment in tumor tissue, inflammation, immunity, and tumor vasculature.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Inflammation , Neoplasms/pathology , Neoplasms/radiotherapy
10.
Breast Cancer Res ; 23(1): 51, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33966638

ABSTRACT

BACKGROUND: Biglycan is a proteoglycan found in the extracellular matrix. We have previously shown that biglycan is secreted from tumor endothelial cells and induces tumor angiogenesis and metastasis. However, the function of stroma biglycan in breast cancer is still unclear. METHODS: Biglycan gene analysis and its prognostic values in human breast cancers were based on TCGA data. E0771 breast cancer cells were injected into WT and Bgn KO mice, respectively. RESULTS: Breast cancer patients with high biglycan expression had worse distant metastasis-free survival. Furthermore, biglycan expression was higher in the tumor stromal compartment compared to the epithelial compartment. Knockout of biglycan in the stroma (Bgn KO) in E0771 tumor-bearing mice inhibited metastasis to the lung. Bgn KO also impaired tumor angiogenesis and normalized tumor vasculature by repressing tumor necrosis factor-ɑ/angiopoietin 2 signaling. Moreover, fibrosis was suppressed and CD8+ T cell infiltration was increased in tumor-bearing Bgn KO mice. Furthermore, chemotherapy drug delivery and efficacy were improved in vivo in Bgn KO mice. CONCLUSION: Our results suggest that targeting stromal biglycan may yield a potent and superior anticancer effect in breast cancer.


Subject(s)
Biglycan/antagonists & inhibitors , Breast Neoplasms/drug therapy , Stromal Cells/metabolism , Tumor Microenvironment/physiology , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Animals , Biglycan/genetics , Biglycan/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , Fibrosis/prevention & control , Humans , Mice , Mice, Knockout , Neoplasm Metastasis/prevention & control , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/prevention & control , Paclitaxel/therapeutic use , Prognosis , Signal Transduction , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism
11.
Commun Biol ; 3(1): 620, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110168

ABSTRACT

Enhanced invasiveness, a critical determinant of metastasis and poor prognosis, has been observed in cancer cells that survive cancer therapy, including radiotherapy. Here, we show that invasiveness in radiation-surviving cancer cells is associated with alterations in lysosomal exocytosis caused by the enhanced activation of Arl8b, a small GTPase that regulates lysosomal trafficking. The binding of Arl8b with its effector, SKIP, is increased after radiation through regulation of BORC-subunits. Knockdown of Arl8b or BORC-subunits decreases lysosomal exocytosis and the invasiveness of radiation-surviving cells. Notably, high expression of ARL8B and BORC-subunit genes is significantly correlated with poor prognosis in breast cancer patients. Sp1, an ATM-regulated transcription factor, is found to increase BORC-subunit genes expression after radiation. In vivo experiments show that ablation of Arl8b decreases IR-induced invasive tumor growth and distant metastasis. These findings suggest that BORC-Arl8b-mediated lysosomal trafficking is a target for improving radiotherapy by inhibiting invasive tumor growth and metastasis.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cell Survival/radiation effects , Lysosomes/physiology , Nerve Tissue Proteins/metabolism , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Signal Transducing , Anti-Bacterial Agents/pharmacology , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement , Doxycycline/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Nerve Tissue Proteins/genetics , Protein Subunits , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism
12.
Med Phys ; 47(9): 4644-4655, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32652574

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/ß)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS: Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/ß)x and repair parameters ((α/ß)x  = 1-15 Gy, T1/2  = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS: The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/ß)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/ß)x range of 1-15 Gy for a fixed value of T1/2  = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/ß)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION: The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.


Subject(s)
Proton Therapy , Protons , Dose-Response Relationship, Radiation , Linear Energy Transfer , Male , Phantoms, Imaging , Radiation, Ionizing , Relative Biological Effectiveness
13.
Neurooncol Adv ; 2(1): vdaa091, 2020.
Article in English | MEDLINE | ID: mdl-33409495

ABSTRACT

BACKGROUND: Radiotherapy is the standard treatment for glioblastoma (GBM). However, radioresistance of GBM cells leads to recurrence and poor patient prognosis. Recent studies suggest that secretion factors have important roles in radioresistance of tumor cells. This study aims to determine whether Rab27b, a small GTPase involved in secretory vesicle trafficking, plays a role in radioresistance of GBM. METHODS: Microarray analysis, cell viability analysis, apoptosis assay, immunostaining, and in vivo experiments were performed to assess the effect of Rab27b on radioresistance of GBM. We further investigated paracrine effects mediated by Rab27b after X-ray irradiation using coculture systems of glioma cell lines. RESULTS: Rab27b was specifically upregulated in irradiated U87MG cells. Furthermore, Rab27b knockdown decreased the proliferation of GBM cells after irradiation. Knockdown of Rab27b in U87MG cells combined with radiation treatment suppressed orthotopic tumor growth in the mouse brain and prolonged the survival of recipient mice. Interestingly, the co-upregulation of Rab27b and epiregulin (EREG), a member of the epidermal growth factor (EGF) family, correlated with radioresistance in glioma cell lines. Additionally, EREG, which was secreted from U87MG cells via Rab27b-mediated mechanism, activated EGF receptor and contributed to H4 cell proliferation in a paracrine manner. CONCLUSIONS: Our results show that Rab27b mediates the radioresistance of highly malignant GBM cells. Rab27b promotes the proliferation of adjacent cells through EREG-mediated paracrine signaling after irradiation. Thus, the Rab27b-EREG pathway is a novel potential target to improve the efficacy of radiotherapy in GBM.

14.
Cell Commun Signal ; 17(1): 169, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847904

ABSTRACT

BACKGROUND: Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood. METHODOLOGY: The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The expressions of pH regulators in TECs and NECs were determined by quantitative reverse transcription-PCR. Cell proliferation was measured by the MTS assay. Western blotting and ELISA were used to validate monocarboxylate transporter 1 and carbonic anhydrase 2 (CAII) protein expression within the cells, respectively. Human tumor xenograft models were used to access the effect of CA inhibition on tumor angiogenesis. Immunohistochemical staining was used to observe CAII expression, quantify tumor microvasculature, microvessel pericyte coverage, and hypoxia. RESULTS: The present study shows that, unlike NECs, TECs proliferate in lactic acidic. TECs showed an upregulated CAII expression both in vitro and in vivo. CAII knockdown decreased TEC survival under lactic acidosis and nutrient-replete conditions. Vascular endothelial growth factor A and vascular endothelial growth factor receptor signaling induced CAII expression in NECs. CAII inhibition with acetazolamide minimally reduced tumor angiogenesis in vivo. However, matured blood vessel number increased after acetazolamide treatment, similar to bevacizumab treatment. Additionally, acetazolamide-treated mice showed decreased lung metastasis. CONCLUSION: These findings suggest that due to their effect on blood vessel maturity, pH regulators like CAII are promising targets of antiangiogenic therapy. Video Abstract.


Subject(s)
Acidosis, Lactic/metabolism , Carbonic Anhydrase II/metabolism , Neoplastic Cells, Circulating/metabolism , Tumor Microenvironment , Acidosis, Lactic/pathology , Animals , Carbonic Anhydrase II/genetics , Cell Proliferation , Cell Survival , Endothelial Cells/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Cells, Circulating/pathology , Signal Transduction , Tumor Cells, Cultured
15.
Cancers (Basel) ; 11(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766201

ABSTRACT

Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.

16.
Cancers (Basel) ; 11(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426369

ABSTRACT

Radiotherapy is used extensively in cancer treatment, but radioresistance and the metastatic potential of cancer cells that survive radiation remain critical issues. There is a need for novel treatments to improve radiotherapy. Here, we evaluated the therapeutic benefit of λ-carrageenan (CGN) to enhance the efficacy of radiation treatment and investigated the underlying molecular mechanism. CGN treatment decreased viability in irradiated cancer cells and enhanced reactive oxygen species accumulation, apoptosis, and polyploid formation. Additionally, CGN suppressed radiation-induced chemoinvasion and invasive growth in 3D lrECM culture. We also screened target molecules using a gene expression microarray analysis and focused on Rac GTPase-activating protein 1 (RacGAP1). Protein expression of RacGAP1 was upregulated in several cancer cell lines after radiation, which was significantly suppressed by CGN treatment. Knockdown of RacGAP1 decreased cell viability and invasiveness after radiation. Overexpression of RacGAP1 partially rescued CGN cytotoxicity. In a mouse xenograft model, local irradiation followed by CGN treatment significantly decreased tumor growth and lung metastasis compared to either treatment alone. Taken together, these results suggest that CGN may enhance the effectiveness of radiation in cancer therapy by decreasing cancer cell viability and suppressing both radiation-induced invasive activity and distal metastasis through downregulating RacGAP1 expression.

17.
FEBS Lett ; 593(6): 644-651, 2019 03.
Article in English | MEDLINE | ID: mdl-30801683

ABSTRACT

Endothelin (ET)-1 is involved in the vascular system, cell proliferation and apoptosis. ET receptors consist of ET type A receptor (ETA R) and ET type B receptor (ETB R). ETA R and ETB R generally exhibit opposite responses, although many exceptions exist. In the present study, we attempted to identify ETA R- or ETB R-specific binding proteins to understand the differences in ETA R- and ETB R-mediated responses after ET-1 stimulation. The 78-kDa glucose-regulated protein (GRP78) showed a stronger binding affinity towards ETB R than towards ETA R. Moreover, GRP78 overexpression promoted ETB R-mediated ERK activation and GRP78 silencing suppressed ETB R-mediated ERK activation. Furthermore, ETB R can localize GRP78 to the cell periphery. These results suggest that the interaction of ETB R with GRP78 affects ERK activation and GRP78 localization.


Subject(s)
Endothelin-1/metabolism , Heat-Shock Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Cell Line, Tumor , Cloning, Molecular , Endoplasmic Reticulum Chaperone BiP , Endothelin-1/genetics , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HeLa Cells , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/genetics , Humans , Melanocytes/cytology , Melanocytes/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Protein Binding , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Endothelin A/genetics , Receptor, Endothelin B/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
18.
Nat Commun ; 9(1): 2682, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29992963

ABSTRACT

Mitochondria dynamically alter their subcellular localization during cell movement, although the underlying mechanisms remain largely elusive. The small GTPase Arf6 and its signaling pathway involving AMAP1 promote cell invasion via integrin recycling. Here we show that the Arf6-AMAP1 pathway promote the anterograde trafficking of mitochondria. Blocking the Arf6-based pathway causes mitochondrial aggregation near the microtubule-organizing center, and subsequently induces detrimental reactive oxygen species (ROS) production, likely via a mitochondrial ROS-induced ROS release-like mechanism. The Arf6-based pathway promotes the localization of ILK to focal adhesions to block RhoT1-TRAK2 association, which controls mitochondrial retrograde trafficking. Blockade of the RhoT1-TRAK1 machinery, rather than RhoT1-TRAK2, impairs cell invasion, but not two-dimensional random cell migration. Weakly or non-invasive cells do not notably express TRAK proteins, whereas they clearly express their mRNAs. Our results identified a novel association between cell movement and mitochondrial dynamics, which is specific to invasion and is necessary for avoiding detrimental ROS production.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Mitochondria/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Cell Movement/genetics , HEK293 Cells , Humans , MCF-7 Cells , Microscopy, Confocal , Oxidative Stress , Protein Transport , RNA Interference , Reactive Oxygen Species/metabolism , Signal Transduction/genetics
19.
Cancer Sci ; 109(4): 956-965, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29465830

ABSTRACT

Radiotherapy induces anti-tumor immunity by induction of tumor antigens and damage-associated molecular patterns (DAMP). DNA, a representative DAMP in radiotherapy, activates the stimulator of interferon genes (STING) pathway which enhances the immune response. However, the immune response does not always parallel the inflammation associated with radiotherapy. This lack of correspondence may, in part, explain the radiation-resistance of tumors. Additive immunotherapy is expected to revive tumor-specific CTL facilitating radiation-resistant tumor shrinkage. Herein pre-administration of the double-stranded RNA, polyinosinic-polycytidylic acid (polyI:C), in conjunction with radiotherapy, was shown to foster tumor suppression in mice bearing radioresistant, ovalbumin-expressing Lewis lung carcinoma (LLC). Extrinsic injection of tumor antigen was not required for tumor suppression. No STING- and CTL-response was induced by radiation in the implant tumor. PolyI:C was more effective for induction of tumor growth retardation at 1 day before radiation than at post-treatment. PolyI:C targeted Toll-like receptor 3 with minimal effect on the mitochondrial antiviral-signaling protein pathway. Likewise, the STING pathway barely contributed to LLC tumor suppression. PolyI:C primed antigen-presenting dendritic cells in draining lymph nodes to induce proliferation of antigen-specific CTL. By combination therapy, CTL efficiently infiltrated into tumors with upregulation of relevant chemokine transcripts. Batf3-positive DC and CD8+ T cells were essential for therapeutic efficacy. Furthermore, polyI:C was shown to stimulate tumor-associated macrophages and release tumor necrosis factor alpha, which acted on tumor cells and increased sensitivity to radiation. Hence, polyI:C treatment prior to radiotherapy potentially induces tumor suppression by boosting CTL-dependent and macrophage-mediated anti-tumor responses. Eventually, polyI:C and radiotherapy in combination would be a promising therapeutic strategy for radiation-resistant tumors.


Subject(s)
Carcinoma, Lewis Lung/radiotherapy , Cell Proliferation/radiation effects , Toll-Like Receptor 3/metabolism , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/radiation effects , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Combined Modality Therapy/methods , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/radiation effects , Disease Models, Animal , Immunotherapy, Adoptive/methods , Macrophages/drug effects , Macrophages/metabolism , Macrophages/radiation effects , Mice , Mice, Inbred C57BL , Poly I-C/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/radiation effects
20.
Int J Nanomedicine ; 12: 5069-5085, 2017.
Article in English | MEDLINE | ID: mdl-28860745

ABSTRACT

Gold nanoparticles (AuNPs) have recently attracted attention as clinical agents for enhancing the effect of radiotherapy in various cancers. Although radiotherapy is a standard treatment for cancers, invasive recurrence and metastasis are significant clinical problems. Several studies have suggested that radiation promotes the invasion of cancer cells by activating molecular mechanisms involving integrin and fibronectin (FN). In this study, polyethylene-glycolylated AuNPs (P-AuNPs) were conjugated with Arg-Gly-Asp (RGD) peptides (RGD/P-AuNPs) to target cancer cells expressing RGD-binding integrins such as α5- and αv-integrins. RGD/P-AuNPs were internalized more efficiently and colocalized with integrins in the late endosomes and lysosomes of MDA-MB-231 cells. A combination of RGD/P-AuNPs and radiation reduced cancer cell viability and increased DNA damage compared to radiation alone in MDA-MB-231 cells. Moreover, the invasive activity of breast cancer cell lines after radiation treatment was significantly inhibited in the presence of RGD/P-AuNPs. Microarray analyses revealed that the expression of FN in irradiated cells was suppressed by combined use of RGD/P-AuNPs. Reduction of FN and downstream signaling may be involved in suppressing radiation-induced invasive activity by RGD/P-AuNPs. Our study suggests that RGD/P-AuNPs can target integrin-overexpressing cancer cells to improve radiation therapy by suppressing invasive activity in addition to sensitization. Thus, these findings provide a possible clinical strategy for using AuNPs to treat invasive breast cancer following radiotherapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Integrins/metabolism , Nanoparticles/administration & dosage , Oligopeptides/chemistry , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Endosomes/drug effects , Endosomes/metabolism , Female , Fibronectins/genetics , Gold/chemistry , Humans , Nanoparticles/chemistry , Oligopeptides/metabolism , Polyethylene Glycols/chemistry , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...