Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 82: 73-80, 2016 09.
Article in English | MEDLINE | ID: mdl-27296440

ABSTRACT

We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused by the oxidative metabolism can be repaired by the efficient maintenance mechanisms, if the energy required by repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis, which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl. We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the empirical evidence and the hypothesis are reconciled by this study.


Subject(s)
Aging/metabolism , Larva/physiology , Manduca/physiology , Oxidative Stress , Animals , Caloric Restriction , Linear Models , Lipid Peroxidation , Models, Theoretical , Protein Carbonylation
2.
J Nat Sci Biol Med ; 5(2): 333-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25097410

ABSTRACT

Native species of microalgae were isolated from natural water bodies in the Midwestern United States of America and were screened for the ultimate goal of mass cultivation in Missouri and the surrounding states, and for their potential as biomass and biodiesel sources. A number of different nutrient media recipes were utilized to isolate the maximum number of colonies from each field samples. These nutrient recipes were modified in order to optimize the isolation and growth dynamics of specific colonies. All of the isolates were categorized based on the morphological appearance of the culture and the microscopic cellular appearance of the isolated colonies. Isolates included many common green microalgae and cyanobacteria. Lipid content was determined for selected strains that demonstrated relatively quick growth. Scenedesmus sp. that demonstrated the high growth rate, resistance to invasion, and contained sufficient amounts of lipid was investigated for its potential as a sustainable biomass and biodiesel feedstocks.

3.
J Agric Food Chem ; 58(8): 4970-6, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20349962

ABSTRACT

Isoflavone, phytosterol, tocopherol, mineral, protein, lipid, and sugar contents of soybeans were analyzed during 7-day germination with or without exposure to light. The levels of phytosterols and tocopherols increased significantly during the 3 day germination. Although malonyl glycosides were the predominant forms of isoflavones in soybean seeds, 77% of malonyl daidzin and 30% of malonyl genistin were converted to corresponding daidzin, daidzein, genistin, and genistein during the germination period. Slight decreases in malonal glycidin and malonyl glycidin concentrations were also observed while the total molar concentration of isoflavones remained constant. An increase of approximately 4% in the protein level was accompanied by a 5-6% reduction in the carbohydrate and lipid contents after the 7-day germination. Mineral (Ca, Cr, Fe, Zn Cu, K, Mg, Mn) levels did not vary much during germination, and the presence of light during germination had only a little, if any, effect on the levels of the micro- and macronutrients in soybeans.


Subject(s)
Carbohydrates/analysis , Glycine max/chemistry , Isoflavones/analysis , Lipids/analysis , Minerals/analysis , Phytosterols/analysis , Plant Proteins/analysis , Tocopherols/analysis , Germination , Mass Spectrometry , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...