Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Eur J Nutr ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705901

ABSTRACT

PURPOSE: Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS: An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-ß and p-cresyl sulfate were administered with butyrate. RESULTS: In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS: This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.

2.
Adv Mater ; 35(52): e2306092, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739451

ABSTRACT

Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1  m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1  m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.

3.
Mol Nutr Food Res ; 66(22): e2101105, 2022 11.
Article in English | MEDLINE | ID: mdl-36059191

ABSTRACT

SCOPE: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed. METHODS AND RESULTS: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice are administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria are improved by administration of KBL409. Ade-CKD mice also exhibit a disrupted intestinal barrier and elevate levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes are attenuated by KBL409. Administration of KBL409 significantly reduces macrophage infiltration and promotes a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway is activated in the kidneys of Ade-CKD and decreases by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increase M2 macrophage polarization factors and decrease profibrotic markers. CONCLUSIONS: These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury.


Subject(s)
Probiotics , Renal Insufficiency, Chronic , Mice , Animals , Lactobacillus acidophilus , Mice, Inbred C57BL , Fibrosis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Probiotics/pharmacology , Kidney/metabolism , Disease Models, Animal , Adenine/pharmacology , Adenine/metabolism
4.
Nat Microbiol ; 6(5): 563-573, 2021 05.
Article in English | MEDLINE | ID: mdl-33820962

ABSTRACT

The gut microbiota, which includes Akkermansia muciniphila, is known to modulate energy metabolism, glucose tolerance, immune system maturation and function in humans1-4. Although A. muciniphila is correlated with metabolic diseases and its beneficial causal effects were reported on host metabolism5-8, the molecular mechanisms involved have not been identified. Here, we report that A. muciniphila increases thermogenesis and glucagon-like peptide-1 (GLP-1) secretion in high-fat-diet (HFD)-induced C57BL/6J mice by induction of uncoupling protein 1 in brown adipose tissue and systemic GLP-1 secretion. We apply fast protein liquid chromatography and liquid chromatography coupled to mass spectrophotometry analysis to identify an 84 kDa protein, named P9, that is secreted by A. muciniphila. Using L cells and mice fed on an HFD, we show that purified P9 alone is sufficient to induce GLP-1 secretion and brown adipose tissue thermogenesis. Using ligand-receptor capture analysis, we find that P9 interacts with intercellular adhesion molecule 2 (ICAM-2). Interleukin-6 deficiency abrogates the effects of P9 in glucose homeostasis and downregulates ICAM-2 expression. Our results show that the interactions between P9 and ICAM-2 could be targeted by therapeutics for metabolic diseases.


Subject(s)
Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Metabolic Diseases/microbiology , Adipose Tissue, Brown/metabolism , Akkermansia/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Bacterial Proteins/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/genetics , Homeostasis , Humans , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
5.
ACS Appl Mater Interfaces ; 13(17): 20349-20360, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33818057

ABSTRACT

In this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown Al2O3 (ALD Al2O3) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in Al2O3 were artificially modulated during the ALD process using different oxidants, such as H2O and O3 (H2O-Al2O3 and O3-Al2O3, respectively). When hydrogen was incorporated into the H2O-Al2O3-passivated TFT, a large negative shift in Vth (ca. -12 V) was observed. In contrast, when hydrogen was incorporated into the O3-Al2O3-passivated TFT, there was a negligible shift in Vth (ca. -0.66 V), which indicates that the O3-Al2O3 has a remarkable hydrogen barrier property. We presented a mechanism for trapping hydrogen in a O3-Al2O3 via various chemical and electrical analyses and revealed that hydrogen molecules were trapped by C-O bonds in the O3-Al2O3, preventing the inflow of hydrogen to the a-IGZO. Additionally, to minimize the deterioration of the pristine device that occurs after a barrier deposition, a bi-layered hydrogen barrier by stacking H2O- and O3-Al2O3 is adopted. Such a barrier can provide ultrastable performance without degradation. Therefore, we envisioned that the excellent hydrogen barrier suggested in this paper can provide the possibility of improving the stability of devices in various fields by effectively blocking hydrogen inflows.

6.
Oncogene ; 39(36): 5876-5887, 2020 09.
Article in English | MEDLINE | ID: mdl-32728173

ABSTRACT

KRAS-mutant non-small cell lung cancer (NSCLC) is a major lung cancer subtype that leads to many cancer-related deaths worldwide. Although numerous studies on KRAS-mutant type NSCLC have been conducted, new oncogenic or tumor suppressive genes need to be detected because a large proportion of NSCLC patients does not respond to currently used therapeutics. Here, we show the tumor-promoting function of a cell cycle-related protein, PIERCE1, in KRAS-mutant NSCLC. Mechanistically, PIERCE1 depletion inhibits cell growth and AKT phosphorylation (pAKT) at S473, which is particularly observed in KRAS-mutant lung cancers. Analyses of AKT-related genes using microarray, immunoblotting, and real-time quantitative PCR indicated that PIERCE1 negatively regulates the gene expression of the AKT suppressor, TRIB3, through the CHOP pathway, which is a key regulatory pathway for TRIB3 expression. Similarly, in vivo analyses of PIERCE1 depletion in the KRAS mutation-related lung cancer mouse models revealed the suppressive effect of PIERCE1 knockout in urethane- and KRASG12D-induced lung tumorigenesis with decreased pAKT levels observed in the tumors. Tissue microarrays of human lung cancers indicated the expression of PIERCE1 in 83% of lung cancers and its correlation with pAKT expression. Thus, we illustrate how PIERCE1 depletion may serve as a therapeutic strategy against KRAS-mutant NSCLC and propose the clinical benefit of PIERCE1.


Subject(s)
Cell Cycle Proteins/deficiency , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Mutation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Animals , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Mice, Knockout , Models, Biological , Prognosis
7.
Telemed J E Health ; 25(8): 693-700, 2019 08.
Article in English | MEDLINE | ID: mdl-30192207

ABSTRACT

Background: Health problems for expatriates are common due to their vulnerability to local infectious diseases, psychosocial problems, and chronic diseases, but many problems go largely unmet in this unique population. Introduction: Telehealth counseling was developed and tested for Korean expatriates. We explored the current status of using telehealth counseling systems and showed its feasibility and acceptability in three countries. Materials and Methods: This retrospective study was based on the "Development and demonstration of telehealth counseling program for overseas Koreans" project funded by the Korea Health Industry Development Institute. In this project, we established five Digital Healthcare Centers (DHCs): 3 in Vietnam and 1 each in Uzbekistan and Cambodia. We used data from October 2016 to September 2017; descriptive analysis and one-way ANOVA were used to present detailed information. Results: A total of 442 patients made an appointment for telehealth counseling services. Overall user satisfaction rates were 96.1%. Over two thirds of patients (302/442, 68.3%) completed one-time telehealth counseling. About 13% were referred to primary care, and 17 (3.8%) were referred to specialists or tertiary hospital. The most common diagnostic category was endocrine, nutritional, and metabolic diseases (14%), followed by diseases of the circulatory system (12.3%) for one-time visit patients. Discussion: Our telehealth counseling program for expatriates was feasible and acceptable in three countries. It also has the potential to minimize language barriers and the cost of healthcare usage. Conclusion: Further research for sustainable effective telehealth systems for expatriates will be needed.


Subject(s)
Emigrants and Immigrants , Patient Satisfaction , Telemedicine/organization & administration , Travel , Adolescent , Adult , Body Weights and Measures , Child , Child, Preschool , Female , Health Services Accessibility , Humans , Infant , Male , Middle Aged , Mobile Applications , Pilot Projects , Program Evaluation , Referral and Consultation , Retrospective Studies , Socioeconomic Factors , Time Factors , Young Adult
8.
Transgenic Res ; 27(3): 241-251, 2018 06.
Article in English | MEDLINE | ID: mdl-29594927

ABSTRACT

Immunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as NeoR cassettes and their characterization. By eliminating any possible effects of adding a NeoR cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene. Our FVB-Rag2-/-, B6-Rag2-/-, and BALB/c-Prkdc-/- mice showed phenotypes similar to those of the earlier immunodeficient mouse models, including a lack of mature B cells and T cells and an increase in the number of CD45+DX-5+ natural killer cells. However, B6-Il2rg-/- mice had a unique phenotype, with a lack of mature B cells, increased number of T cells, and decreased number of natural killer cells. Additionally, serum immunoglobulin levels in all four immunodeficient mouse models were significantly reduced when compared to those in wild-type mice with the exception of IgM in B6-Il2rg-/- mice. These results indicate that our immunodeficient mouse models are a robust tool for in vivo studies of the immune system and will provide new insights into the variation in phenotypic outcomes resulting from different gene-targeting methodologies.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Knockout Techniques/methods , Mice, Knockout/genetics , Mice, SCID/genetics , Animals , Disease Models, Animal , Gene Targeting/methods , Humans , Mice , Mice, Inbred BALB C , Phenotype , T-Lymphocytes/immunology
9.
Mol Cells ; 40(12): 897-905, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29237114

ABSTRACT

Cellular protein homeostasis is maintained by two major degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Until recently, the UPS and autophagy were considered to be largely independent systems targeting proteins for degradation in the proteasome and lysosome, respectively. However, the identification of crucial roles of molecular players such as ubiquitin and p62 in both of these pathways as well as the observation that blocking the UPS affects autophagy flux and vice versa has generated interest in studying crosstalk between these pathways. Here, we critically review the current understanding of how the UPS and autophagy execute coordinated protein degradation at the molecular level, and shed light on our recent findings indicating an important role of an autophagy-associated transmembrane protein EI24 as a bridging molecule between the UPS and autophagy that functions by regulating the degradation of several E3 ligases with Really Interesting New Gene (RING)-domains.


Subject(s)
Autophagy/physiology , Proteasome Endopeptidase Complex/physiology , Ubiquitin/metabolism , Humans
10.
ACS Nano ; 11(8): 7841-7847, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28723069

ABSTRACT

Semiconductor integrated circuit chip industries have been striving to introduce porous ultralow-k (ULK) dielectrics into the multilevel interconnection process in order to improve their chip operation speed by reducing capacitance along the signal path. To date, however, highly porous ULK dielectrics (porosity >40%, dielectric constant (k) <2.4) have not been successfully adopted in real devices because the porous nature causes many serious problems, including noncontinuous barrier deposition, penetration of the barrier metal, and reliability issues. Here, a method that allows porous ULK dielectrics to be successfully used with a multilevel interconnection scheme is presented. The surface of the porous ULK dielectric film (k = 2.0, porosity ∼47%) could be completely sealed by a thin (<2 nm) polymer deposited by a multistep initiated chemical vapor deposition (iCVD) process. Using the iCVD process, a thin pore-sealing layer was localized only to the surface of the porous ULK dielectric film, which could minimize the increase of k; the final effective k was less than 2.2, and the penetration of metal barrier precursors into the dielectric film was completely blocked. The pore-sealed ULK dielectric film also exhibited excellent long-term reliability comparable to a dense low-k dielectric film.

11.
Metab Eng ; 32: 23-29, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26319589

ABSTRACT

There have been growing concerns regarding the limited fossil resources and global climate changes resulting from modern civilization. Currently, finding renewable alternatives to conventional petrochemical processes has become one of the major focus areas of the global chemical industry sector. Since over 4.2 million tons of acrylic acid (AA) is annually employed for the manufacture of various products via petrochemical processes, this chemical has been the target of efforts to replace the petrochemical route by ecofriendly processes. However, there has been limited success in developing an approach combining the biological production of 3-hydroxypropionic acid (3-HP) and its chemical conversion to AA. Here, we report the first direct fermentative route for producing 0.12 g/L of AA from glucose via 3-HP, 3-HP-CoA, and Acryloyl-CoA, leading to a strain of Escherichia coli capable of directly producing acrylic acid. This route was developed through extensive screening of key enzymes and designing a novel metabolic pathway for AA.


Subject(s)
Acrylates/metabolism , Fermentation/genetics , Coenzyme A/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/metabolism , Green Chemistry Technology , Lactic Acid/analogs & derivatives , Lactic Acid/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics
12.
Nanoscale ; 6(13): 7503-11, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24883431

ABSTRACT

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 µm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 µm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.

13.
mBio ; 4(1): e00541-12, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23300250

ABSTRACT

UNLABELLED: Singlet oxygen ((1)O(2)) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by (1)O(2), and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from (1)O(2) is by inducing a transcriptional response controlled by ChrR, an anti-σ factor which releases an alternative sigma factor, σ(E), in the presence of (1)O(2). Here we report that induction of σ(E)-dependent gene transcription is decreased in the presence of (1)O(2) when two conserved genes in the σ(E) regulon are deleted, including one encoding a cyclopropane fatty acid synthase homologue (RSP2144) or one encoding a protein of unknown function (RSP1091). Thus, we conclude that RSP2144 and RSP1091 are each necessary to increase σ(E) activity in the presence of (1)O(2). In addition, we found that unlike in wild-type cells, where ChrR is rapidly degraded when (1)O(2) is generated, turnover of this anti-σ factor is slowed when cells lacking RSP2144, RSP1091, or both of these proteins are exposed to (1)O(2). Further, we demonstrate that the organic hydroperoxide tert-butyl hydroperoxide promotes ChrR turnover in both wild-type cells and mutants lacking RSP2144 or RSP1091, suggesting differences in the ways different types of oxidants increase σ(E) activity. IMPORTANCE: Oxygen serves many crucial functions on Earth; it is produced during photosynthesis and needed for other pathways. While oxygen is relatively inert, it can be converted to reactive oxygen species (ROS) that destroy biomolecules, cause disease, or kill cells. When energy is transferred to oxygen, the ROS singlet oxygen is generated. To understand how singlet oxygen impacts cells, we study the stress response to this ROS in Rhodobacter sphaeroides, a bacterium that, like plants, generates this compound as a consequence of photosynthesis. This paper identifies proteins that activate a stress response to singlet oxygen and shows that they act in a specific response to this ROS. The identified proteins are found in many free-living, symbiotic, or pathogenic bacteria that can encounter singlet oxygen in nature. Thus, our findings provide new information about a stress response to a ROS of broad biological, agricultural, and biomedical importance.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Oxidative Stress , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/genetics , Singlet Oxygen/metabolism , Transcription, Genetic , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Gene Deletion , Sigma Factor/biosynthesis , Singlet Oxygen/toxicity , Transcription Factors/biosynthesis
14.
Nanoscale ; 5(2): 548-51, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23233087

ABSTRACT

We report on the nanosheet-thickness effects on the performance of top-gate MoS(2) field-effect transistors (FETs), which is directly related to the MoS(2) dielectric constant. Our top-gate nanosheet FETs with 40 nm thin Al(2)O(3) displayed at least an order of magnitude higher mobility than those of bottom-gate nanosheet FETs with 285 nm thick SiO(2), benefiting from the dielectric screening by high-k Al(2)O(3). Among the top-gate devices, the single-layered FET demonstrated the highest mobility of ∼170 cm(2) V(-1) s(-1) with 90 mV dec(-1) as the smallest subthreshold swing (SS) but the double- and triple-layered FETs showed only ∼25 and ∼15 cm(2) V(-1) s(-1) respectively with the large SS of 0.5 and 1.1 V dec(-1). Such property degradation with MoS(2) thickness is attributed to its dielectric constant increase, which could rather reduce the benefits from the top-gate high-k dielectric.

15.
Nano Lett ; 12(7): 3695-700, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22681413

ABSTRACT

We report on the fabrication of top-gate phototransistors based on a few-layered MoS(2) nanosheet with a transparent gate electrode. Our devices with triple MoS(2) layers exhibited excellent photodetection capabilities for red light, while those with single- and double-layers turned out to be quite useful for green light detection. The varied functionalities are attributed to energy gap modulation by the number of MoS(2) layers. The photoelectric probing on working transistors with the nanosheets demonstrates that single-layer MoS(2) has a significant energy bandgap of 1.8 eV, while those of double- and triple-layer MoS(2) reduce to 1.65 and 1.35 eV, respectively.

16.
J Mol Biol ; 407(4): 477-91, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21295582

ABSTRACT

In the photosynthetic bacterium Rhodobacter sphaeroides, a transcriptional response to the reactive oxygen species singlet oxygen ((1)O(2)) is mediated by ChrR, a zinc metalloprotein that binds to and inhibits the activity of the alternative σ factor σ(E). We provide evidence that (1)O(2) promotes the dissociation of σ(E) from ChrR to activate transcription in vivo. To identify what is required for (1)O(2) to promote the dissociation of σ(E)/ChrR complexes, we analyzed the in vivo properties of variant ChrR proteins with amino acid changes in conserved residues of the C-terminal cupin-like domain (ChrR-CLD). We found that (1)O(2) was unable to promote the detectable dissociation of σ(E)/ChrR complexes when the ChrR-CLD zinc ligands (His141, His143, Glu147, and His177) were substituted with alanine, even though individual substitutions caused a 2-fold to 10-fold decrease in zinc affinity for this domain relative to that for wild-type ChrR (K(d)∼4.6×10(-)(10) M). We conclude that the side chains of these invariant residues play a crucial role in the response to (1)O(2). Additionally, we found that cells containing variant ChrR proteins with single amino acid substitutions at Cys187 or Cys189 exhibited σ(E) activity similar to those containing wild-type ChrR when exposed to (1)O(2), suggesting that these thiol side chains are not required for (1)O(2) to induce σ(E) activity in vivo. Finally, we found that the same aspects of R. sphaeroides ChrR needed for a response to (1)O(2) are required for the dissociation of σ(E)/ChrR complexes in the presence of the organic hydroperoxide t-butyl hydroperoxide.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation , Rhodobacter sphaeroides/metabolism , Sigma Factor/metabolism , Singlet Oxygen/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Amino Acid Substitution , Bacterial Proteins/genetics , Coenzymes/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Structure, Quaternary , Rhodobacter sphaeroides/genetics , Transcription Factors/genetics , Zinc/metabolism
17.
Proc Natl Acad Sci U S A ; 105(10): 3751-6, 2008 Mar 11.
Article in English | MEDLINE | ID: mdl-18319344

ABSTRACT

In Escherichia coli, glucose-dependent transcriptional induction of genes encoding a variety of sugar-metabolizing enzymes and transport systems is mediated by the phosphorylation state-dependent interaction of membrane-bound enzyme IICB(Glc) (EIICB(Glc)) with the global repressor Mlc. Here we report the crystal structure of a tetrameric Mlc in a complex with four molecules of enzyme IIB(Glc) (EIIB), the cytoplasmic domain of EIICB(Glc). Each monomer of Mlc has one bound EIIB molecule, indicating the 1:1 stoichiometry. The detailed view of the interface, along with the high-resolution structure of EIIB containing a sulfate ion at the phosphorylation site, suggests that the phosphorylation-induced steric hindrance and disturbance of polar intermolecular interactions impede complex formation. Furthermore, we reveal that Mlc possesses a built-in flexibility for the structural adaptation to its target DNA and that interaction of Mlc with EIIB fused only to dimeric proteins resulted in the loss of its DNA binding ability, suggesting that flexibility of the Mlc structure is indispensable for its DNA binding.


Subject(s)
Cell Membrane/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Amino Acid Sequence , Binding Sites , Cysteine , DNA, Bacterial/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation , Pliability , Protein Binding , Protein Structure, Secondary , Structure-Activity Relationship
18.
Nucleic Acids Res ; 33(21): 6712-22, 2005.
Article in English | MEDLINE | ID: mdl-16314304

ABSTRACT

Expression of the Escherichia coli sdhCDAB operon encoding the succinate dehydrogenase complex is regulated in response to growth conditions, such as anaerobiosis and carbon sources. An anaerobic repression of sdhCDAB is known to be mediated by the ArcB/A two-component system and the global Fnr anaerobic regulator. While the cAMP receptor protein (CRP) and Cra (formerly FruR) are known as key mediators of catabolite repression, they have been excluded from the glucose repression of the sdhCDAB operon. Although the glucose repression of sdhCDAB was reported to involve a mechanism dependent on the ptsG expression, the molecular mechanism underlying the glucose repression has never been clarified. In this study, we re-examined the mechanism of the sdhCDAB repression by glucose and found that CRP directly regulates expression of the sdhCDAB operon and that the glucose repression of this operon occurs in a cAMP-dependent manner. The levels of phosphorylated enzyme IIA(Glc) and intracellular cAMP on various carbon sources were proportional to the expression levels of sdhC-lacZ. Disruption of crp or cya completely abolished the glucose repression of sdhC-lacZ expression. Together with data showing correlation between the intracellular cAMP concentrations and the sdhC-lacZ expression levels in several mutants and wild type, in vitro transcription assays suggest that the decrease in the CRP.cAMP level in the presence of glucose is the major determinant of the glucose repression of the sdhCDAB operon.


Subject(s)
Cyclic AMP/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Glucose/pharmacology , Operon , Receptors, Cell Surface/metabolism , Succinate Dehydrogenase/genetics , Transcription Factors/metabolism , Bacterial Proteins/genetics , Base Sequence , Binding Sites , Cyclic AMP Receptor Protein , Enzyme Repression , Escherichia coli/enzymology , Escherichia coli/metabolism , Gene Deletion , Molecular Sequence Data , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Promoter Regions, Genetic , Succinate Dehydrogenase/biosynthesis , Transcription, Genetic
19.
J Biol Chem ; 279(37): 38513-8, 2004 Sep 10.
Article in English | MEDLINE | ID: mdl-15252051

ABSTRACT

Because the phosphoenolpyruvate:sugar phosphotransferase system plays multiple regulatory roles in addition to the phosphorylation-coupled transport of many sugars in bacteria, synthesis of its protein components is regulated in a highly sophisticated way. Thus far, the cAMP receptor protein (CRP) complex and Mlc are known to be the major regulators of ptsHIcrr and ptsG expression in response to the availability of carbon sources. In this report, we performed ligand fishing experiments by using the promoters of ptsHIcrr and ptsG as bait to find out new factors involved in the transcriptional regulation of the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli, and we found that the anaerobic regulator ArcA specifically binds to the promoters. Deletion of the arcA gene caused about a 2-fold increase in the ptsG expression, and overexpression of ArcA significantly decreased glucose consumption. In vitro transcription assays showed that phospho-ArcA (ArcA-P) represses ptsG P1 transcription. DNase I footprinting experiments revealed that ArcA-P binds to three sites upstream of the ptsG P1 promoter, two of which overlap the CRP-binding sites, and the ArcA-P binding decreases the CRP binding that is essential for the ptsG P1 transcription. These results suggest that the response regulator ArcA regulates expression of enzyme IICB(Glc) mediating the first step of glucose metabolism in response to the redox conditions of growth in E. coli.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/biosynthesis , Repressor Proteins/metabolism , Base Sequence , Binding Sites , Biological Transport , Cyclic AMP/metabolism , Deoxyribonuclease I/metabolism , Escherichia coli Proteins , Gene Deletion , Genotype , Lac Operon , Ligands , Molecular Sequence Data , Phenotype , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphorylation , Plasmids/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic , beta-Galactosidase/metabolism
20.
J Biol Chem ; 279(30): 31613-21, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15169777

ABSTRACT

The bacterial phosphoenolpyruvate:sugar phosphotransferase system regulates a variety of physiological processes as well as effecting sugar transport. The crr gene product (enzyme IIA(Glc) (IIA(Glc))) mediates some of these regulatory phenomena. In this report, we characterize a novel IIA(Glc)-binding protein from Escherichia coli extracts, discovered using ligand-fishing with surface plasmon resonance spectroscopy. This protein, which we named FrsA (fermentation/respiration switch protein), is the 47-kDa product of the yafA gene, previously denoted as "function unknown." FrsA forms a 1:1 complex specifically with the unphosphorylated form of IIA(Glc), with the highest affinity of any protein thus far shown to interact with IIA(Glc). Orthologs of FrsA have been found to exist only in facultative anaerobes belonging to the gamma-proteobacterial group. Disruption of frsA increased cellular respiration on several sugars including glucose, while increased FrsA expression resulted in an increased fermentation rate on these sugars with the concomitant accumulation of mixed-acid fermentation products. These results suggest that IIA(Glc) regulates the flux between respiration and fermentation pathways by sensing the available sugar species via a phosphorylation state-dependent interaction with FrsA.


Subject(s)
Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Amino Acid Sequence , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Fermentation , Genes, Bacterial , Kinetics , Molecular Sequence Data , Molecular Weight , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...