Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37761756

ABSTRACT

The use of virtual reality (VR) content in neurological disorders with cognitive impairment is increasing. We have developed a device that incorporates virtual drum beating content, designed for digit memorization training. This study aimed to investigate the effects of realistic cognitive training on brain activity using functional near-infrared spectroscopy (fNIRS). Thirty healthy individuals were recruited and randomly assigned into two groups: conventional cognitive exercise (CCE) and a realistic cognitive exergame (RCE). Subjects in the CCE group underwent memory training by memorizing numbers displayed on a computer screen and then writing them on paper. The main outcome measure was the oxyhemoglobin level in the dorsolateral prefrontal cortex (DLPFC). As a result, the average number of digits was 7.86 ± 0.63 for the CCE and 7.6 ± 0.82 for the RCE. The mean difference in ΔHbO was 1.417 ± 0.616 µm (p = 0.029) in channel 2, located in the right DLPFC. Channel 7 and channel 10, which measured activations in the hypothesized medial orbitofrontal cortex (OFC), also showed a significant mean difference of ΔHbO. DLPFC and OFC presented higher activation in the RCE group (p < 0.05), attributable to the simultaneous memory training and virtual drum beating, which provided various sensory inputs (visual, auditory, and vibration). Although DLPFC involvement in cognitive processes remains controversial, our findings suggest that realistic memory training using drumming content can lead to safer activation of the DLPFC compared to conventional cognitive training.

2.
Healthcare (Basel) ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38200976

ABSTRACT

Functional ankle instability (FAI), which is characterized by recurrent ankle sprains and perceived joint instability, arises from various factors contributing to compromised biomechanical control during activities, particularly those involving landing tasks. While current research predominantly addresses lower-extremity and core stabilization interventions for FAI, the contribution of upper body control to landing biomechanics in this population remains insufficiently explored. In this study, 42 participants (19 males, 23 females) with FAI were randomly assigned to either the upper-body control training group (UBCTG) or the core muscle stabilization training group (CMSTG). The groups underwent six-week interventions, with the UBCTG receiving a dynamic core exercise program including upper body control and the CMSTG receiving static core muscle training. Pre- and post-intervention assessments encompassed electromyography of the gastrocnemius, tibialis anterior, and peroneus longus, motion analysis of the lower extremities, and ground reaction force (GRF) readings during a single-leg-jump task. Additionally, dynamic balance was assessed using the Y balance test and self-reported measurements of ankle instability were performed. The results showed similar increases in muscle activation, joint movement, and self-reported ankle instability scores within both groups. However, significant between-group differences were observed in terms of knee flexion angle, dynamic balance, and ankle instability scores, favoring the UBCTG. Although the peak vertical GRF significantly decreased and the time to peak vertical GRF increased in both groups, more changes were noted in the UBCTG. Our results demonstrated that dynamic core exercises with additional upper body control training enhance landing biomechanics, dynamic balance, and stability in individuals with FAI. Consequently, we recommend incorporating shoulder girdle exercises, proprioceptive drills, and balance exercises into dynamic core training.

3.
Trials ; 23(1): 729, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056399

ABSTRACT

BACKGROUND: High-intensity repetitive task-specific practice might be the most effective strategy to promote motor recovery after stroke, and electromechanical-assisted gait training represents one of the treatment options. However, there is still difficulty in clarifying the difference between conventional gait training and electromechanically assisted gait training. METHODS: The study is a multicenter, randomized, parallel-group clinical trial for stroke patients. Three clinical research centers in Korea (Dongguk University Ilsan Hospital, Chungnam National University Hospital, and Seoul National University Bundang Hospital) will participate in the clinical trial and 144 stroke patients will be registered. Enrolled patients are assigned to two groups, an experimental group and a control group, according to a randomization table. In addition, patients are treated for half an hour (one session) five times a week for 4 weeks. Both groups carry out basic rehabilitation (central nervous system development therapy and strength exercise) and the experimental group executes robotic walking rehabilitation treatment, and the control group executes conventional gait rehabilitation treatment. The primary endpoint variable is the Functional Ambulation Category (FAC) that determines the degree of independent walking and is measured before, after, and after 4 weeks of treatment. Secondary endpoint variables are 11 variables that take into account motor function and range, measured at the same time as the primary endpoint variable. DISCUSSION: There are still insufficient data on the effectiveness of electromechanical-assisted gait training for stroke patients and large-scale research is lacking. Thus, the research described here is a large-scale study of stroke patients that can supplement the limitations mentioned in other previous studies. In addition, the clinical studies described here include physical epidemiological analysis parameters that can determine walking ability. The results of this study can lead to prove the generalizable effectiveness and safety of electromechanical-assisted gait training with EXOWALK®. TRIAL REGISTRATION: Clinical Research Information Service (CRIS), Republic of Korea KCT0003411, Registered on 30 October 2018.


Subject(s)
Stroke Rehabilitation , Stroke , Exercise Therapy/methods , Gait/physiology , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Recovery of Function , Stroke/complications , Stroke/diagnosis , Stroke/therapy , Stroke Rehabilitation/methods , Treatment Outcome , Walking/physiology
4.
BMC Sports Sci Med Rehabil ; 14(1): 126, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35818062

ABSTRACT

BACKGROUND: This study was conducted to assess the effect of electromechanical-assisted gait training intensity on walking ability in patients over 3-month post-stroke. METHODS: Data from two randomized controlled trials (RCTs) were collected under the same study design of assessment and intervention, excluding intervention time per session. After matching the inclusion criteria of two RCTs, the experimental groups of each RCT were defined as low-intensive (LI) and high-intensive (HI) group according to the intervention time per session. Primary outcome was the difference of the change in Functional Ambulatory Categories (FAC) between LI and HI gait training. Secondary outcomes were the difference of changes in mobility, walking speed, walking capacity, leg-muscle strength, balance and daily activity evaluated with Rivermead Mobility Index (RMI), 10 m walk test (10MWT), 6-min walk test (6MWT), Motricity Index (MI), Berg Balance Scale (BBS) and Modified Barthel Index (MBI) respectively. RESULTS: The FAC improved after gait training in both groups. The secondary outcomes also improved in both groups except RMI and MI in HI group. The change of all outcomes were not different between groups except RMI. The change of RMI in the LI group was greater than that in the HI group statistically, but it did not meet minimal clinically important difference. CONCLUSIONS: The improvement of walking ability after LI or HI gait training was not different if providing the same total gait training time. By providing the electromechanical gait training intensively, we could shorten the gait training period to improve walking ability and customize the training program according to the patient training abilities. TRIAL REGISTRATION: Name of the registry: Clinical Research Information Service. TRIAL REGISTRATION NUMBER: No. KCT0002195(RCT1), No. KCT0002552(RCT2). Date of registration: 10/04/2016(RCT1), 10/05/2017(RCT2). URL of the trial registry record: https://cris.nih.go.kr/cris/search.

5.
Sci Rep ; 12(1): 6880, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477986

ABSTRACT

Electromechanical-assisted gait training may be an effective intervention to promote motor recovery after brain injury. However, many studies still have difficulties in clarifying the difference between electromechanical-assisted gait training and conventional gait training. To evaluate the effectiveness of electromechanical-assisted gait training compared to that of conventional gait training on clinical walking function and gait symmetry of stroke patients. We randomly assigned patients with stroke (n = 144) to a control group (physical therapist-assisted gait training) and an experimental group (electromechanical gait training). Both types of gait training were done for 30 min each day, 5 days a week for 4 weeks. The primary endpoint was the change in functional ambulatory category (FAC). Secondary endpoints were clinical walking functions and gait symmetries of swing time and step length. All outcomes were measured at baseline (pre-intervention) and at 4 weeks after the baseline (post-intervention). FAC showed significant improvement after the intervention, as did clinical walking functions, in both groups. The step-length asymmetry improved in the control group, but that in the experimental group and the swing-time asymmetry in both groups did not show significant improvement. In the subgroup analysis of stroke duration of 90 days, FAC and clinical walking functions showed more significant improvement in the subacute group than in the chronic group. However, gait symmetries did not show any significant changes in either the subacute or the chronic group. Electromechanically assisted gait training by EXOWALK was as effective as conventional gait training with a physiotherapist. Although clinical walking function in the subacute group improved more than in the chronic group, gait asymmetry did not improve for either group after gait training.Trial registration: KCT0003411 Clinical Research Information Service (CRIS), Republic of Korea.


Subject(s)
Brain Injuries , Stroke Rehabilitation , Stroke , Brain Injuries/complications , Gait , Humans , Walking
6.
J Rehabil Med Clin Commun ; 4: 1000074, 2021.
Article in English | MEDLINE | ID: mdl-34858561

ABSTRACT

OBJECTIVE: To investigate the efficacy of electromechanically-assisted rehabilitation of upper limb function in post-stroke patients. DESIGN: Randomized controlled trial. SUBJECTS: Forty-eight stroke patients. METHODS: Patients were randomly assigned to control and experimental groups. The control group underwent occupational therapy training with conventional methods. The experimental group underwent electromechanically-assisted training using an end effector robot (Camillo®). Interventions were provided for 30 min per day, 5 days a week, for 4 weeks. Primary outcome was change in Fugl-Meyer Assessment (FMA) before and after training. Secondary outcomes were changes in hand function, upper limb strength, spasticity, mental status and quality of life. RESULTS: Mean improvement in FMA was 1.17 (standard deviation (SD) 4.18) in the control group and 2.52 (SD 5.48) in the experimental group. Although FMA in the experimental group improved significantly after training, the improvement in FMA did not differ significantly between groups. Among the secondary outcomes, the Motricity Index (MI) improved significantly after training in the experimental group, and the change in MI between groups was statistically significant. CONCLUSION: Electromechanically-assisted rehabilitation using Camillo® was not more effective than conventional occupation therapy for upper arm function.

7.
J Rehabil Med ; 52(9): jrm00097, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32778902

ABSTRACT

OBJECTIVE: To assess the effect on walking ability of electromechanically assisted gait training with a gait trainer (Exowalk®) for patients with chronic stroke. DESIGN: Randomized controlled trial. SUBJECTS: Forty patients with hemiplegia after stroke. METHODS: Patients were randomly assigned to control and experimental groups. The control group underwent physical therapist-assisted gait training and the experimental group underwent electromechanically assisted gait training. Interventions were provided for 60 min, 5 days a week, for a period of 2 weeks. Primary outcome was change in Functional Ambulatory Category. Secondary outcomes were walking speed, walking capacity, leg muscle strength and balance. All outcomes were measured before and after the intervention. RESULTS: Although the Functional Ambulatory Category improved significantly after gait training in both groups, the change in Functional Ambulatory Category did not differ between groups. In both groups most secondary outcomes also improved after gait training, but the changes in secondary outcomes did not differ between groups. CONCLUSION: In patients with chronic stroke, walking improved after gait training with or without electromechanical assistance. Electromechanically assisted gait training was not superior to conventional physiotherapy.


Subject(s)
Exercise Therapy/methods , Gait/physiology , Physical Therapy Modalities/standards , Stroke Rehabilitation/methods , Stroke/complications , Adult , Aged , Female , Humans , Male , Middle Aged
8.
Arch Phys Med Rehabil ; 100(1): 26-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30055163

ABSTRACT

OBJECTIVE: To assess the efficacy of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients based on ambulatory function, muscle strength, balance, gait speed, and capacity. DESIGN: Randomized controlled trial. SETTING: University rehabilitation hospital. PARTICIPANTS: Individuals (N=40) with stroke who could stand alone. INTERVENTIONS: Patients were randomly assigned to control and experimental groups. The control group underwent physical therapist-assisted gait training by conventional method. The experimental group underwent electromechanical gait training assisted by an exoskeleton device. Both types of gait training were performed for 30 minutes each day. The therapeutic interventions were provided for 5 days a week for a period of 4 weeks in both groups. MAIN OUTCOME MEASURES: Functional ambulatory category (FAC) before and after gait training. Changes in FAC were the primary outcomes to evaluate the efficacy of electromechanical exoskeleton-assisted gait training. Changes in mobility, walking speed, walking capacity, leg muscle strength, daily activity, and balance were secondary outcomes. RESULTS: FAC in the control group was 2.44±1.55 in the pretraining and 2.75±1.53 in the post-training. FAC in the experimental group was 3.22±1.31 in the pretraining and 3.78±1.44 in the post-training. Although FAC between pre- and post-training sessions improved in both groups, the changes in FAC were statistically significant in the experimental group alone. Most secondary outcomes in both groups also showed improvement after gait training. However, the differential outcomes were not varied between the 2 groups after adjusting the data for age and stroke duration. We did not exclude patients based on time since stroke onset. The average stroke duration was 530.11±389.21 days in the experimental group. The changes in FAC of the experimental group were negatively correlated with stroke duration. No adverse events were noticed during gait training in either group. CONCLUSIONS: Electromechanical exoskeleton-assisted gait training is as effective as conventional gait training by a physical therapist when administered by a gait trainer. As an overground walking system without harness, electromechanical exoskeleton replaced a physical therapist in assisted gait training for patients who stand alone. Because the ambulatory function of stroke patients was affected negatively by stroke duration, the effect of electromechanical-assisted gait training might decline with increased stroke duration.


Subject(s)
Electric Stimulation Therapy/methods , Exoskeleton Device , Gait Disorders, Neurologic/therapy , Stroke Rehabilitation/methods , Stroke/physiopathology , Adult , Aged , Disability Evaluation , Electric Stimulation Therapy/instrumentation , Female , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Mobility Limitation , Stroke/complications , Stroke Rehabilitation/instrumentation , Treatment Outcome , Walk Test , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...