Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408882

ABSTRACT

Combined anti-cytokine therapy is a promising therapeutic approach for uncontrolled steroid-resistant asthma. In this regard, simultaneous blockade of IL-4 and IL-13 signaling by Dupilumab (anti-IL-4Ra monoclonal antibody) was recently approved for severe eosinophilic asthma. However, no therapeutic options for neutrophilic asthma are currently available. Recent advances in our understanding of asthma pathogenesis suggest that both IL-6 and TNF may represent potential targets for treatment of severe neutrophilic asthma. Nevertheless, the efficacy of simultaneous pharmacological inhibition of TNF and IL-6 in asthma was not yet studied. To evaluate the potency of combined cytokine inhibition, we simultaneously administrated IL-6 and TNF inhibitors to BALB/c mice with HDM-induced asthma. Combined IL-6/TNF inhibition, but not individual blockade of these two cytokines, led to complex anti-inflammatory effects including reduced Th2-induced eosinophilia and less prominent Th17/Th1-mediated neutrophilic infiltrate in the airways. Taken together, our results provide evidence for therapeutic potential of combined IL-6/TNF inhibition in severe steroid-resistant asthma.


Subject(s)
Asthma , Interleukin-6 , Animals , Cytokines , Disease Models, Animal , Interleukin-6/pharmacology , Mice , Mice, Inbred BALB C , Th1 Cells , Th17 Cells
2.
Front Immunol ; 12: 601842, 2021.
Article in English | MEDLINE | ID: mdl-34084159

ABSTRACT

Asthma is a heterogeneous inflammatory disease characterized by airflow obstruction, wheezing, eosinophilia and neutrophilia of the airways. Identification of distinct inflammatory patterns characterizing asthma endotypes led to the development of novel therapeutic approaches. Cytokine or cytokine receptor targeting by therapeutic antibodies, such as anti-IL-4 and anti-IL-5, is now approved for severe asthma treatment. However, the complexity of cytokine networks in asthma should not be underestimated. Inhibition of one pro-inflammatory cytokine may lead to perturbed expression of another pro-inflammatory cytokine. Without understanding of the underlying mechanisms and defining the molecular predictors it may be difficult to control cytokine release that accompanies certain disease manifestations. Accumulating evidence suggests that in some cases a combined pharmacological inhibition of pathogenic cytokines, such as simultaneous blockade of IL-4 and IL-13 signaling, or blockade of upstream cytokines, such as TSLP, are more effective than single cytokine targeting. IL-6 and TNF are the important inflammatory mediators in the pathogenesis of asthma. Preliminary data suggests that combined pharmacological inhibition of TNF and IL-6 during asthma may be more efficient as compared to individual neutralization of these cytokines. Here we summarize recent findings in the field of anti-cytokine therapy of asthma and discuss immunological mechanisms by which simultaneous targeting of multiple cytokines as opposed to targeting of a single cytokine may improve disease outcomes.


Subject(s)
Asthma , Cytokines , Inflammation Mediators , Lung , Asthma/immunology , Asthma/pathology , Asthma/therapy , Cytokines/antagonists & inhibitors , Cytokines/immunology , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Lung/immunology , Lung/pathology
3.
Cancers (Basel) ; 13(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917839

ABSTRACT

Tumor necrosis factor (TNF) and lymphotoxin alpha (LTα) are two related cytokines from the TNF superfamily, yet they mediate their functions in soluble and membrane-bound forms via overlapping, as well as distinct, molecular pathways. Their genes are encoded within the major histocompatibility complex class III cluster in close proximity to each other. TNF is involved in host defense, maintenance of lymphoid tissues, regulation of cell death and survival, and antiviral and antibacterial responses. LTα, known for some time as TNFß, has pleiotropic functions including control of lymphoid tissue development and homeostasis cross talk between lymphocytes and their environment, as well as lymphoid tissue neogenesis with formation of lymphoid follicles outside the lymph nodes. Along with their homeostatic functions, deregulation of these two cytokines may be associated with initiation and progression of chronic inflammation, autoimmunity, and tumorigenesis. In this review, we summarize the current state of knowledge concerning TNF/LTα functions in tumor promotion and suppression, with the focus on the recently uncovered significance of host-microbiota interplay in cancer development that may explain some earlier controversial results.

4.
Immunol Lett ; 207: 73-83, 2019 03.
Article in English | MEDLINE | ID: mdl-30659868

ABSTRACT

Severe asthma is a heterogeneous inflammatory disease of the airways, which requires treatment with high-dose inhaled corticosteroids or their systemic administration, yet often remains uncontrolled despite this therapy. Over the past decades, research efforts into phenotyping of severe asthma and defining the pathological mechanisms of this disease were successful largely due to the development of appropriate animal models. Recent identification of distinct inflammatory patterns of severe asthma endotypes led to novel treatment approaches, including targeting specific cytokines or their receptors with neutralizing antibodies. Here we discuss how different experimental mouse models contributed to generation of clinically relevant findings concerning pathogenesis of severe asthma and to identification of potential targets for biologic therapy.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Asthma/therapy , Cytokines/metabolism , Immunotherapy/methods , Animals , Antibodies, Neutralizing , Asthma/immunology , Cytokines/immunology , Disease Models, Animal , Disease Progression , Humans , Mice , Receptors, Cytokine/immunology , Receptors, Cytokine/metabolism
5.
Front Immunol ; 9: 2718, 2018.
Article in English | MEDLINE | ID: mdl-30534125

ABSTRACT

Asthma is a common inflammatory disease of the airway caused by a combination of genetic and environmental factors and characterized by airflow obstruction, wheezing, eosinophilia, and neutrophilia of lungs and sputum. Similar to other proinflammatory cytokines, IL-6 is elevated in asthma and plays an active role in this disease. However, the exact molecular mechanism of IL-6 involvement in the pathogenesis of asthma remains largely unknown and the major cellular source of pathogenic IL-6 has not been defined. In the present study, we used conditional gene targeting to demonstrate that macrophages and dendritic cells are the critical sources of pathogenic IL-6 in acute HDM-induced asthma in mice. Complete genetic inactivation of IL-6 ameliorated the disease with significant decrease in eosinophilia in the lungs. Specific ablation of IL-6 in macrophages reduced key indicators of type 2 allergic inflammation, including eosinophil and Th2 cell accumulation in the lungs, production of IgE and expression of asthma-associated inflammatory mediators. In contrast, mice with deficiency of IL-6 in dendritic cells demonstrated attenuated neutrophilic, but regular eosinophilic response in HDM-induced asthma. Taken together, our results indicate that IL-6 plays a pathogenic role in the HDM-induced asthma model and that lung macrophages and dendritic cells are the predominant sources of pathogenic IL-6 but contribute differently to the disease.


Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Interleukin-6/immunology , Macrophages/immunology , Animals , Asthma/genetics , Asthma/pathology , Dendritic Cells/pathology , Disease Models, Animal , Eosinophils/immunology , Eosinophils/pathology , Interleukin-6/genetics , Macrophages/pathology , Mice , Mice, Knockout , Th2 Cells/immunology , Th2 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...