Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 23(3): 327-343, 2023 03.
Article in English | MEDLINE | ID: mdl-36724479

ABSTRACT

Primitive cells are believed to have been self-assembled vesicular structures with minimal metabolic components, that were capable of self-maintenance and self-propagation in early Earth geological settings. The coevolution and self-assembly of biomolecules, such as amphiphiles, peptides, and nucleic acids, or their precursors, were essential for protocell emergence. Here, we present a novel class of amphiphiles-amino acid-fatty alcohol esters-that self-assemble into stable primitive membrane compartments under a wide range of geochemical conditions. Glycine n-octyl ester (GOE) and isoleucine n-octyl ester (IOE), the condensation ester products of glycine or isoleucine with octanol (OcOH), are expected to form at a mild temperature by wet-dry cycles. The GOE forms micelles in acidic aqueous solutions (pH 2-7) and vesicles at intermediate pH (pH 7.3-8.2). When mixed with cosurfactants (octanoic acid [OcA]; OcOH, or decanol) in different mole fractions [XCosurfactant = 0.1-0.5], the vesicle stability range expands significantly to span the extremely acidic to mildly alkaline (pH 2-8) and extremely alkaline (pH 10-11) regions. Only a small mole fraction of cosurfactant [XCosurfactant = 0.1] is needed to make stable vesicular structures. Notably, these GOE-based vesicles are also stable in the presence of high concentrations of divalent cations, even at low pHs and in simulated Hadean seawater composition (without sulfate). To better understand the self-assembly behavior of GOE-based systems, we devised complementary molecular dynamics computer simulations for a series of mixed GOE/OcA systems under simulated acidic pHs. The resulting calculated critical packing parameter values and self-assembly behavior were consistent with our experimental findings. The IOE is expected to show similar self-assembly behavior. Thus, amino acid-fatty alcohol esters, a novel chimeric amphiphile class composed of an amino acid head group and a fatty alcohol tail, may have aided in building protocell membranes, which were stable in a wide variety of geochemical circumstances and were conducive to supporting replication and self-maintenance. The present work contributes to our body of work supporting our hypothesis for synergism and coevolution of (proto)biomolecules on early Earth.


Subject(s)
Amino Acids , Fatty Alcohols , Esters , Isoleucine , Glycine
2.
Nano Lett ; 22(11): 4421-4428, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35609117

ABSTRACT

The self-assembly of chiral Pd12L24 metal-organic cages (MOCs) based on hydrophobic amino acids, including alanine (Ala), valine (Val), and leucine (Leu), into single-layered hollow spherical blackberry-type structures is triggered by nitrates through counterion-mediated attraction. In addition to nitrates, anionic N-(tert-butoxycarbonyl) (Boc)-protected Ala, Val, and Leu were used as chiral counterions during the self-assembly of d-MOCs. Previously, we showed that l-Ala suppresses the self-assembly process of d-Pd12Ala24 but has no effect on l-Pd12Ala24, i.e., chiral discrimination. Here, we indicate when the amino acid used as the chiral counterion has a bulkier side group than the amino acid in the MOC structure, no chiral discrimination exists; otherwise, chiral discrimination exists. For example, Ala can induce chiral discrimination in all chiral MOCs, whereas Leu can induce chiral discrimination only in Pd12Leu24. Moreover, chiral anionic d- and l-alanine-based surfactants have no chiral discrimination, indicating that bulkier chiral counterions with more hydropohobic side groups can erase chiral discrimination.


Subject(s)
Amino Acids , Nitrates , Alanine , Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Metals , Stereoisomerism
3.
Proc Natl Acad Sci U S A ; 115(3): 513-518, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29298911

ABSTRACT

Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.


Subject(s)
Oxidoreductases/chemistry , Protozoan Proteins/chemistry , Trypanosoma brucei brucei/enzymology , Electron Transport , Kinetics , Oxidoreductases/metabolism , Protein Conformation , Protein Domains , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/chemistry
4.
Biochim Biophys Acta ; 1798(6): 1056-61, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20226759

ABSTRACT

The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.


Subject(s)
Cell Membrane/chemistry , Peptides/chemistry , Phosphatidylcholines/chemistry , Receptors, Interleukin-8A/chemistry , Animals , Binding Sites , Cell Membrane/metabolism , Fluorescence Polarization , Humans , Peptides/metabolism , Protein Structure, Tertiary , Receptors, Interleukin-8A/metabolism , Signal Transduction/physiology , Structure-Activity Relationship
5.
Orig Life Evol Biosph ; 38(4): 329-41, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18560991

ABSTRACT

The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.


Subject(s)
Membranes/chemistry , Amines/chemistry , Calcium/chemistry , Cations , Chromatography, Gel , Environment , Fatty Acids/chemistry , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Iron/chemistry , Lauric Acids/chemistry , Magnesium/chemistry , Molecular Conformation , Permeability
6.
Colloids Surf B Biointerfaces ; 54(1): 118-23, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-16829059

ABSTRACT

In dilute aqueous solution and at room temperature, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) self-assembles into vesicles (self-closed bilayers), if the molar ratio of the neutral form of DHA to anionic DHA is kept between 1:1 and 1:3 (corresponding to a bulk pH between 8.5 and 9.2 for a system with 10 mM DHA). By using polycarbonate membrane extrusion, stable unilamellar DHA vesicles with an average diameter of 80 nm can be prepared at pH 8.8. Cryo-transmission electron microscopy indicates that the width of the DHA bilayers in the vesicles is clearly below twice the length of an extended DHA molecule, indicating a high conformational flexibility of DHA within the vesicle bilayer. These DHA bilayers have a similar thickness like bilayers of vesicles prepared at pH 8.5 from oleic acid (cis-9-octadecenoic acid). Using calcein as fluorescent reference compound, it is shown that water-soluble molecules can be encapsulated inside DHA vesicles which may make them interesting for medical or food applications.


Subject(s)
Docosahexaenoic Acids/chemistry , Colloids , Cryoelectron Microscopy , Fluoresceins/chemistry , Microscopy, Electron, Transmission , Molecular Structure , Titrimetry
7.
Langmuir ; 21(14): 6210-9, 2005 Jul 05.
Article in English | MEDLINE | ID: mdl-15982022

ABSTRACT

Different aspects of mixtures of decanoic acid and sodium decanoate were investigated in aqueous solution up to a total concentration of 300 mM. Depending on the ratio of ionized to nonionized decanoic acid, micelles or vesicles form above the critical concentrations of micelle (cmc) or the critical concentration for vesicle formation (cvc). The micelles and the vesicles are always present together with nonmicellized or nonvesiculized decanoate. The latter was determined for different total concentrations. On the basis of titration curves, by application of the Gibbs phase rule, and on the basis of differential scanning calorimetry measurements and an electron microscopy analysis, the pH region within which vesicles exist was identified (pH 6.8-7.8). At pH 7.0, the concentration of nonvesiculized decanoate is approximately 20 mM. Decanoic acid/decanoate vesicles can be sized down by the extrusion technique to form stable and mainly unilamellar vesicles with a mean diameter of less than 100 nm. By coaddition of an equimolar amount of sodium dodecylbenzenesulfonate (SDBS) to decanoic acid, vesicles also formed below pH 6.8. These mixed vesicles were investigated as potential templates for the peroxidase-catalyzed polymerization of aniline at pH 4.3. Furthermore, decanaote micelles (at pH 11.0) were applied as reaction modifiers for the simultaneous competitive alkaline hydrolysis of p-nitrophenylacetate and fluorescein diacetate. While the rate of hydrolysis of fluorescein diacetate is slowed considerably in the presence of the micelles in comparison with the micelle-free system, the rate of hydrolysis of p-nitrophenylacetate remains almost unaffected.

SELECTION OF CITATIONS
SEARCH DETAIL
...