Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Laryngoscope ; 127(3): E107-E113, 2017 03.
Article in English | MEDLINE | ID: mdl-27585358

ABSTRACT

OBJECTIVES/HYPOTHESIS: Laryngotracheal stenosis (LTS) is a chronic fibrotic disease characterized by fibroblast proliferation, collagen deposition, and matrix remodeling in the lamina propria of the larynx and/or trachea. Current medical therapies are limited by a poor understanding of the effector cell's (fibroblasts) cellular biology and metabolism. The purpose of this study was to compare cellular proliferation, function, and metabolism between normal and LTS-derived fibroblasts in vitro. We hypothesize that LTS-derived fibroblasts will demonstrate aberrant behavior with faster proliferation, increased collagen production, and altered metabolic allocation compared with normal fibroblasts. STUDY DESIGN: In vitro comparative analysis. METHODS: Human biopsies of normal and iatrogenic LTS tissue (n = 7) were obtained, and fibroblasts were isolated and cultured in vitro. Cellular proliferation, cellular histology, gene expression, and metabolic analyses were performed. Statistical analyses comparing normal and scar-derived fibroblasts were performed. RESULTS: LTS fibroblast proliferation rate, cellular surface area, and collagen-1 expression were increased compared to normal fibroblasts. Cellular metabolic analysis of LTS-derived fibroblasts demonstrated reduced oxidative phosphorylation and increased glycolysis/oxidative phosphorylation ratio compared with normal fibroblasts. CONCLUSIONS: Human iatrogenic LTS-derived fibroblasts demonstrated aberrant behavior when compared with normal fibroblasts. A Warburg-like effect was revealed, suggesting human iatrogenic LTS fibroblasts drive their proliferation with aerobic glycolysis. The distinct metabolism suggests metabolic inhibitors could reduce fibroblast hyperplasia and hypertrophy in LTS and fibrosis in general. LEVEL OF EVIDENCE: NA Laryngoscope, 127:E107-E113, 2017.


Subject(s)
Cell Proliferation/physiology , Fibroblasts/metabolism , Laryngostenosis/pathology , Oxygen Consumption , Tracheal Stenosis/pathology , Biopsy, Needle , Cell Culture Techniques , Cells, Cultured , Collagen/metabolism , Humans , Immunohistochemistry , Laryngostenosis/metabolism , Real-Time Polymerase Chain Reaction/methods , Reference Values , Sampling Studies , Statistics, Nonparametric , Tracheal Stenosis/metabolism
2.
Otolaryngol Head Neck Surg ; 152(5): 881-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25754184

ABSTRACT

OBJECTIVE: To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)-derived fibroblasts. STUDY DESIGN: Controlled in vitro study. SETTING: Tertiary care hospital in a research university. SUBJECTS AND METHODS: Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10(-10) M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10(-9) M (high-dose) rapamycin dissolved in DMSO. RESULTS: The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. CONCLUSIONS: Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin's anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis.


Subject(s)
Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/physiology , Immunosuppressive Agents/pharmacology , Laryngostenosis/pathology , Sirolimus/pharmacology , Cell Culture Techniques , Collagen/metabolism , Fibroblasts/metabolism , Humans , Laryngostenosis/immunology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...