Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-13, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37368861

ABSTRACT

In this work, a dual-pronged approach- (i) novel thin-film nanocomposite polyether sulfone (PES) membrane with MIL-101 (Fe) and (ii) 3D printed spacers were explored to enhance water recovery by forward osmosis. The concentration of PES, pore former, draw solution, and MIL-101(Fe) was optimised for maximum pure water flux (PWF) and minimum specific reverse solute flux (SRSF). The best membrane exhibited a PWF of 7.52 Lm-2 h-1 and an SRSF of 0.33 ± 0.03 gL-1 using 1.5 M NaCl and DI water feed. The M22 membrane with the diamond-type spacer demonstrated a PWF of 2.53 Lm-2 h-1 and SRSF of 0.75 gL-1 for emulsified oily wastewater feed. The novel spacer design imparted significant turbulence to the feed flow and a lower foulant resistance of 1.3 m-1 as compared to the ladder type (1.5 m-1) or commercial spacer (1.7 m-1). This arrangement could recover 19% pure water within 12 h of operation (98% oil rejection) with a ∼ 94% flux recovery after hydraulic wash.

2.
Membranes (Basel) ; 13(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233547

ABSTRACT

Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.

3.
J Environ Manage ; 293: 112925, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34289593

ABSTRACT

The development of membrane technology has proved vital in providing a sustainable and affordable supply of clean water to address the ever-increasing demand. Though liquid separation applications have been still dominated by polymeric membranes, porous ceramic membranes have gained a commercial foothold in microfiltration (MF) and ultrafiltration (UF) applications due to their hydrophilic nature, lower fouling, ease of cleaning, reliable performance, robust performance with harsh feeds, relative insensitivity to temperature and pH, and stable long-term flux. The enrichment of research and development on porous ceramic membranes extends its focus into advanced membrane separation technologies. The latest emerging nanofiltration (NF) and membrane distillation (MD) applications have witnessed special interests in constructing porous membrane with hydrophilic/functional/hydrophobic properties. However, NF and MD are relatively new, and many shortcomings must be addressed to compete with their polymeric counterparts. For the last three years (2018-2020), state-of-the-art literature on porous ceramic membranes has been collected and critically reviewed. This review highlights the efficiency (permeability, selectivity, and antifouling) of hydrophilic porous ceramic membranes in a wide variety of wastewater treatment applications and hydrophobic porous ceramic membranes in membrane distillation-based desalination applications. A significant focus on pores characteristics, pore sieving phenomenon, nano functionalization, and synergic effect on fouling, the hydrophilic porous ceramic membrane has been discussed. In another part of this review, the role of surface hydrophobicity, water contact angle, liquid entry pressure (LEP), thermal properties, surface micro-roughness, etc., has been discussed for different types of hydrophobic porous ceramic membranes -(a) metal-based, (b) silica-based, (c) other ceramics. Also, this review highlights the potential benefits, drawbacks, and limitations of the porous membrane in applications. Moreover, the prospects are emphasized to overcome the challenges in the field.


Subject(s)
Membranes, Artificial , Water Purification , Ceramics , Porosity , Ultrafiltration
4.
Environ Sci Pollut Res Int ; 28(10): 11915-11927, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32072412

ABSTRACT

Effluents from food, fermentation, and sugar industries contain a large quantity of glucose which has to be removed to limit the chemical oxygen demand (COD) of the water discharged. This work proposes novel thin-film nanocomposite (TFN) membranes incorporated with MgFe2O4 and ZnFe2O4 nanoparticles to address this concern. The nanoparticles synthesized by the sol-gel method was extensively characterized and then incorporated into the active polyamide layer of the thin-film composite polysulfone membranes. The change in membrane morphology, wettability, chemical structure, and mechanical strength with the incorporation of nanoparticles was studied in detail. Membranes with 0.005 wt.% MgFe2O4 nanoparticle exhibited highest glucose rejection (96.52 ± 2.35%) at 10 bar, 25 °C, and sufficiently high pure water flux (50.54 ± 1.92 L/m2h). This membrane also displayed 69.1 ± 5.12% salt rejection when challenged with 2000 ppm synthetic NaCl solution.


Subject(s)
Nanocomposites , Water Purification , Ferric Compounds , Polymers , Sulfones
SELECTION OF CITATIONS
SEARCH DETAIL
...