Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917482

ABSTRACT

Proton conductors have potential applications such as fuel cells, electrolysis cells, and sensors. These applications require new materials with high proton conductivity and high chemical stability at intermediate temperatures. Herein we report a series of new hexagonal perovskite-related oxides, Ba5R2Al2SnO13 (R = Gd, Dy, Ho, Y, Er, Tm, and Yb). Ba5Er2Al2SnO13 exhibited a high proton conductivity without chemical doping (e.g., 0.01 S cm-1 at 303 °C), which is attributed to its high proton concentration and diffusion coefficient. The high diffusion coefficient of Ba5Er2Al2SnO13 can be attributed to the fast proton migration in the octahedral layers. The high proton concentration is attributed to full hydration in hydrated Ba5Er2Al2SnO13 and the large amount of intrinsic oxygen vacancies in the dry sample, as evidenced by both neutron diffraction and thermogravimetric analysis. Ba5Er2Al2SnO13 was found to exhibit high chemical stability under wet atmospheres of O2, air, H2, and CO2. High proton conductivity and high chemical stability indicate that Ba5Er2Al2SnO13 is a superior proton conductor. Ba5R2Al2SnO13 (R = Gd, Dy, Ho, Y, Tm, and Yb) exhibited high electrical conductivity in wet N2, suggesting that these materials also exhibit high proton conductivity. These findings will open new avenues for proton conductors. The high proton conductivity via full hydration and fast proton migration in octahedral layers in highly oxygen-deficient hexagonal perovskite-related materials would be an effective strategy for developing next-generation proton conductors.

2.
Inorg Chem ; 63(11): 4989-4996, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38440851

ABSTRACT

The triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry.

3.
Nat Mater ; 23(2): 182-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182809

ABSTRACT

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

4.
Inorg Chem ; 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35657337

ABSTRACT

We report room-temperature (RT) magnetoresistance (MR) in a novel Fe-based perovskite, SrV0.3Fe0.7O2.8. This compound contains ordered oxygen vacancies in every fifth primitive perovskite (111)p plane, leading to a layered structure consisting of triple-octahedral and double-tetrahedral layers. Along with the oxygen vacancies, the transition-metal ions are also ordered: the octahedral sites are occupied by 100% of Fe ions, while the tetrahedral sites are occupied by 25% of Fe ions and 75% of V ions. As a result, SrV0.3Fe0.7O2.8 forms a magnetically striped lattice in which the octahedral layers with 100% of magnetic Fe ions are separated by the diluted magnetic layer. The compound exhibits weak ferromagnetism and shows a large negative MR (-5% at 3 T) at RT, despite the small saturation moment (0.4 µB/Fe atom). Thus, this type of layered compound is promising for further large MR by an increase of magnetization through chemical substitution.

5.
Inorg Chem ; 61(17): 6584-6593, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35430816

ABSTRACT

Narrow-gap semiconductors with visible light absorption capability have attracted attention as photofunctional materials. H--doped BaSn0.7Y0.3O3-δ containing Sn(II) species was recently reported to absorb visible light up to 600 nm, which represents the first demonstration of oxyhydride-based visible-light-absorbers. In the present study, a more detailed investigation was made to obtain information on the synthesis and properties of H--doped perovskite-type stannate with respect to the A-site cation of the material and the preparation conditions. H--doped ASn0.7Y0.3O3-δ (A = Ba, Ba0.5Sr0.5, and Sr) obtained by the reaction of ASn0.7Y0.3O3-δ precursors with CaH2 at 773 K under vacuum conditions was shown to have almost the same bandgap (ca. 2.1 eV), regardless of the A-site cation. Physicochemical measurements and theoretical calculations revealed that the identical bandgaps of H--doped ASn0.7Y0.3O3-δ are due to the simultaneous shift of the midgap states composed of Sn2+ with the conduction band minimum. Experimental results also indicated that the appropriate preparation conditions with respect to Y3+-substitution and the temperature for the synthesis of the ASn0.7Y0.3O3-δ precursors were essential to obtain H--doped products that have a low density of defects.

6.
Nat Commun ; 12(1): 5199, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465792

ABSTRACT

A triplon refers to a fictitious particle that carries angular momentum S=1 corresponding to the elementary excitation in a broad class of quantum dimerized spin systems. Such systems without magnetic order have long been studied as a testing ground for quantum properties of spins. Although triplons have been found to play a central role in thermal and magnetic properties in dimerized magnets with singlet correlation, a spin angular momentum flow carried by triplons, a triplon current, has not been detected yet. Here we report spin Seebeck effects induced by a triplon current: triplon spin Seebeck effect, using a spin-Peierls system CuGeO3. The result shows that the heating-driven triplon transport induces spin current whose sign is positive, opposite to the spin-wave cases in magnets. The triplon spin Seebeck effect persists far below the spin-Peierls transition temperature, being consistent with a theoretical calculation for triplon spin Seebeck effects.

7.
Inorg Chem ; 60(16): 11957-11963, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34309363

ABSTRACT

Studies on magnetic oxyhydrides have been almost limited to perovskite-based lattices with corner-sharing octahedra with a M-H-M (M: transition metal) angle of θ ∼ 180°. Using a high-pressure method, we prepared BaCrO2H with a 6H-type hexagonal perovskite structure with corner- and face-sharing octahedra, offering a unique opportunity to investigate magnetic interactions based on a θ ∼ 90° case. Neutron diffraction for BaCrO2H revealed an antiferromagnetic (AFM) order at TN ∼ 375 K, which is higher than ∼240 K in BaCrO3-xFx. The relatively high TN of BaCrO2H can be explained by the preferred occupancy of H- at the face-sharing site that provides AFM superexchange in addition to AFM direct exchange interactions. First-principles calculations on BaCrO2H in comparison with BaCrO2F and BaMnO3 further reveal that the direct Cr-Cr interaction is significantly enhanced by shortening the Cr-Cr distance due to the covalent nature of H-. This study provides a useful strategy for the extensive control of magnetic interactions by exploiting the difference in the covalency of multiple anions.

8.
Phys Rev Lett ; 125(19): 197201, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216581

ABSTRACT

NiGa_{2}S_{4} is a triangular lattice S=1 system with strong two dimensionality of the lattice, actively discussed as a candidate to host spin-nematic order brought about by strong quadrupole coupling. Using Raman scattering spectroscopy we identify a phonon of E_{g} symmetry which can modulate magnetic exchange J_{1} and produce quadrupole coupling. Additionally, our Raman scattering results demonstrate a loss of local inversion symmetry on cooling, which we associate with sulfur vacancies. This will lead to disordered Dzyaloshinskii-Moriya interactions, which can prevent long-range magnetic order. Using magnetic Raman scattering response we identify 160 K as a temperature of an upturn of magnetic correlations. The temperature range below 160 K, but above 50 K where antiferromagnetic correlations start to increase, is a candidate for spin-nematic regime.

9.
Inorg Chem ; 59(12): 8121-8126, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32437136

ABSTRACT

Using a high-pressure synthesis method, we prepared the layered oxychalcogenide Ba2CoO2Ag2Te2 (space group: I4/mmm) with alternating stacks of CoO2 and Ag2Te2 layers, separated by Ba atoms. The CoO2 plane is greatly extended (Co-O = 2.19 Å on average) due to tensile strain from adjacent Ag2Te2 layers, causing displacement of oxide anions. Layered cobaltates with trans-CoO4X2 (X = chalcogen, halogen) coordination feature large spin-orbit coupling, which is linearly scaled by the tetrahedral factor of dCo-X/dCo-O. However, applying this relation to Ba2CoO2Ag2Te2 yields a magnetic moment of ∼4 µB, which is nearly twice the experimentally observed value of 1.87(17) µB. This result, along with a reduced Néel temperature (TN = 60 K), originates from the off-centered position of otherwise under-bonded oxide anions, which changes the crystal field splitting of Co d orbitals.

10.
Phys Rev B ; 1002019.
Article in English | MEDLINE | ID: mdl-33655090

ABSTRACT

Magnetic properties of MnSb2Te4 were examined through magnetic susceptibility, specific-heat, and neutron-diffraction measurements. As opposed to isostructural MnBi2Te4 with the antiferromagnetic ground state, MnSb2Te4 develops a spontaneous magnetization below 25 K. From our first-principles calculations on the material in a ferromagnetic state, the state could be interpreted as a type-II Weyl semimetal state with broken time-reversal symmetry. Detailed structural refinements using x-ray-diffraction and neutron-diffraction data reveal the presence of site mixing between Mn and Sb sites, leading to the ferrimagnetic ground state. With theoretical calculations, we found that the presence of site mixing plays an important role for the interlayer Mn-Mn ferromagnetic interactions.

11.
Phys Rev Lett ; 115(12): 127202, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26431013

ABSTRACT

The temporal magnetic correlations of the triangular-lattice antiferromagnet NiGa_{2}S_{4} are examined through 13 decades (10^{-13}-1 sec) using ultrahigh-resolution inelastic neutron scattering, muon spin relaxation, and ac and nonlinear susceptibility measurements. Unlike the short-ranged spatial correlations, the temperature dependence of the temporal correlations show distinct anomalies. The spin fluctuation rate decreases precipitously upon cooling towards T^{*}=8.5 K, but fluctuations on the microsecond time scale then persist in an anomalous dynamical regime for 4 K

12.
Nat Mater ; 14(10): 1008-12, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26191659

ABSTRACT

All the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ∼120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.

13.
J Phys Condens Matter ; 23(16): 164202, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21471613

ABSTRACT

The triangular antiferromagnet is one of the most fundamental systems of geometrically frustrated magnets. NiGa(2)S(4) is a layered chalcogenide compound with an equilateral triangular lattice, and it is a prime candidate for an S = 1 triangular antiferromagnet. Here we focus on low temperature magnetism in NiGa(2)S(4), where quasi-static spins develop a spin-wave-like mode without forming any long-range ordering. We have studied low temperature magnetism of both polycrystalline samples and single crystals of Ni(1 - x)A(x)Ga(2)S(4) (A = Mn, Fe, Co, and Zn). A scaling law with a single energy scale of the Weiss temperature is found as an impurity effect and a hydrostatic pressure effect, providing evidence that it is in-plane interactions in the two-dimensional NiS(2) plane that drive the critical slowing down to the viscous spin liquid state at T(*) = 8.5 K and the spin-wave-like excitations of NiGa(2)S(4) that emerge below T ∼ 3 K. Furthermore, we find spin-size dependent impurity effects in the temperature dependence of the specific heat of Ni(1 - x)A(x)Ga(2)S(4). Even with a high impurity content, Zn(2+) (S = 0) and Fe(2+) (S = 2) substituted systems with weak XY anisotropy and integral spins retain the quadratic temperature dependence of the magnetic specific heat like pure NiGa(2)S(4). A spin glass-like phase, on the other hand, emerges at low temperatures with the substitution of magnetic impurities with half-odd integer spins: Ising Co(2+) (S = (3/2)) and weak XY Mn(2+) S = (5/2)) spins. This indicates that an integer size of spins is important for stabilizing the two-dimensional spin-wave-like behavior, and the unconventional spin state of NiGa(2)S(4) at low temperatures is distinct from a canonical spin glass.

14.
Phys Rev Lett ; 106(3): 037201, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405289

ABSTRACT

Magnetism in the orthorhombic metal CaFe(4)As(3) was examined through neutron diffraction for powder and single crystalline samples. Incommensurate [q(m) ≈ (0.37-0.39) × b*] and predominantly longitudinally (|| b) modulated order develops through a 2nd order phase transition at TN = 89.63(6) K with a 3D Heisenberg-like critical exponent ß = 0.365(6). A 1st order transition at T2 = 25.6(9) K is associated with the development of a transverse component, locking q(m) to 0.375(2)b*, and increasing the moments from 2.1(1) to 2.2(3) µ B for Fe2+ and from 1.3(3) to 2.4(4) µB for Fe+. The ab initio Fermi surface is consistent with a nesting instability in cross-linked FeAs strips.

15.
Phys Rev Lett ; 104(22): 226404, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20867187

ABSTRACT

An angle-resolved photoemission spectroscopy (ARPES) study is reported on a Mott insulator NiGa2S4 in which Ni2+ (S=1) ions form a triangular lattice and the Ni spins do not order even in its ground state. The first ARPES study on the two-dimensional spin-disordered system shows that low-energy hole dynamics at high temperatures is characterized by wave vectors Q(E) which are different from wave vectors Q(M) dominating low-energy spin excitations at low temperatures. The unexpected difference between Q(E) and Q(M) is deeply related to charge fluctuation across the Mott gap in the frustrated lattice and is a key issue to understand the spin-disordered ground states in Mott insulators.

16.
Phys Rev Lett ; 101(20): 207204, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19113375

ABSTRACT

Impurity effects on the triangular antiferromagnets Ni1-xMxGa2S4 (M=Mn, Fe, Co and Zn) are studied. The 2D frozen spin-disordered state of NiGa2S4 is stable against the substitution of Zn2+ (S=0) and Heisenberg Fe2+ (S=2) spins, and exhibits a T2-dependent magnetic specific heat, scaled by the Weiss temperature. In contrast, the substitutions with Co2+ (S=3/2) spin with Ising-like anisotropy and Heisenberg Mn2+ (S=5/2) spin induce a conventional spin glass phase below 1 K. From these comparisons, it is suggested that the integer size of the Heisenberg spins is important to stabilize the 2D coherent behavior observed in the frozen spin-disordered state.

17.
Science ; 309(5741): 1697-700, 2005 Sep 09.
Article in English | MEDLINE | ID: mdl-16151004

ABSTRACT

As liquids crystallize into solids on cooling, spins in magnets generally form periodic order. However, three decades ago, it was theoretically proposed that spins on a triangular lattice form a liquidlike disordered state at low temperatures. Whether or not a spin liquid is stabilized by geometrical frustration has remained an active point of inquiry ever since. Our thermodynamic and neutron measurements on NiGa2S4, a rare example of a two-dimensional triangular lattice antiferromagnet, demonstrate that geometrical frustration stabilizes a low-temperature spin-disordered state with coherence beyond the two-spin correlation length. Spin liquid formation may be an origin of such behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...