Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cancer Drug Resist ; 7: 24, 2024.
Article in English | MEDLINE | ID: mdl-39050885

ABSTRACT

The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.

2.
Pharmaceutics ; 16(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675175

ABSTRACT

Diabetic Parkinson's disease (DP) is a progressive neurodegenerative disease with metabolic syndrome that is increasing worldwide. Emerging research suggests that cannabidiol (CBD) is a neuropharmacological compound that acts against this disease, especially CBD in nano-formulation. The safety of cannabidiol lipid nanoparticles (CBD-LNP) was evaluated by assessing in vitro cytotoxicity in neurons and therapeutic outcomes in a DP animal model, including metabolic parameters and histopathology. CBD-LNPs were fabricated by using a microfluidization technique and showed significantly lower cytotoxicity than the natural form of CBD. The DP rats were induced by streptozotocin followed by a 4-week injection of MPTP with a high-fat diet. Rats were treated orally with a vehicle, CBD, CBD-LNP, or levodopa for 4 weeks daily. As a result, vehicle-treated rats exhibited metabolic abnormalities, decreased striatal dopamine levels, and motor and memory deficits. CBD-LNP demonstrated reduced lipid profiles, enhanced insulin secretion, and restored dopamine levels compared to CBD in the natural form. CBD-LNP also had comparable efficacy to levodopa in ameliorating motor deficits and memory impairment in behavior tests. Interestingly, CBD-LNP presented migration of damaged neuronal cells in the hippocampus more than levodopa. These findings suggest that CBD-LNP holds promise as an intervention addressing both metabolic and neurodegenerative aspects of DP, offering a potential therapeutic strategy.

3.
PeerJ ; 12: e17033, 2024.
Article in English | MEDLINE | ID: mdl-38435986

ABSTRACT

Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.


Subject(s)
Corticosterone , Synbiotics , Male , Animals , Rats , Rats, Wistar , Venlafaxine Hydrochloride/pharmacology , Cognition
4.
Macromol Biosci ; 23(12): e2300250, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37535979

ABSTRACT

A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.


Subject(s)
Hydrogels , Metal Nanoparticles , Animals , Hydrogels/pharmacology , Gelatin/pharmacology , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Wound Healing
5.
Fish Shellfish Immunol ; 139: 108913, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393062

ABSTRACT

Streptococcus agalactiae is one of Thailand's most important pathogens in tilapia aquaculture. Vaccination is a very effective method for protecting fish against disease in aquaculture. Oral vaccination is an interesting route for vaccine delivery as it mimics the pathogenesis of S. agalactiae and provides convenient administration for mass vaccination of fish. Moreover, gut mucosal immunity is associated with a mucus layer on the gastrointestinal tract. Therefore, this study aimed to develop a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS) and determined its physicochemical characterization, morphology, in vitro mucoadhesive property, permeability, and acid-base tolerance. In addition, the efficacy of NEB-CS as an oral vaccination for Nile tilapia was evaluated in order to investigate the innate immune response and protection against S. agalactiae. The groups of fish consisted of: (1) deionized water as a non-vaccinated control (Control); (2) an inactivated vaccine formulated from formalin-killed bacteria (IB); and (3) a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS). The control, IB, and NEB-CS were incorporated into commercial feed pellets and fed to Nile tilapia. In addition, we evaluated the serum bactericidal activity (SBA) for 14 days post-vaccination (dpv) and protective efficacy for 10 days post-challenge, respectively. The mucoadhesiveness, permeability, and absorption within the tilapia intestine were also assessed in vivo. The NEB-CS vaccine appeared spherical, with the nanoparticles having a size of 454.37 nm and a positive charge (+47.6 mV). The NEB-CS vaccine had higher levels of mucoadhesiveness and permeability than the NEB (p < 0.05). The relative percent survival (RPS) of IB and NEB-CS, when administered orally to fish, was 48% and 96%, respectively. Enhanced SBA was noted in the NEB-CS and IB vaccine groups compared to the control group. The results demonstrate that a feed-based NEB-CS can improve the mucoadhesiveness, permeability, and protective efficacy of the vaccine, and appear to be a promising approach to protecting tilapia in aquaculture against streptococcosis.


Subject(s)
Chitosan , Cichlids , Fish Diseases , Streptococcal Infections , Tilapia , Animals , Streptococcus agalactiae , Bacterial Vaccines , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary
6.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38250830

ABSTRACT

In the present study, chitosan-based bivalent nanovaccines of S. iniae and F. covae were administered by immersion vaccination at 30 and 40 days after hatching (DAH), and the third vaccination was orally administered by feeding at 50 DAH. ELISA revealed that the levels of total IgM and specific IgM to S. iniae and F. covae were significantly elevated in all vaccinated groups at 10, 20, and 30 days after vaccination (DAV). A qRT-PCR analysis of immune-related genes revealed significantly higher IgT expression in the vaccinated groups compared to the control group, as revealed by 44-100-fold changes in the vaccinated groups compared to the control (p < 0.001) at every tested time point after vaccination. All vaccinated groups expressed IgM, MHCIIα, and TCRα at significantly higher levels than the control group at 10 and/or 20 DAV (p < 0.05). In the S. iniae challenge tests, the survival of vaccinated groups ranged from 62.15 ± 2.11 to 75.70 ± 3.36%, which significantly differed from that of the control group (44.44 ± 1.92%). Similarly, all vaccinated groups showed higher survival rates of 68.89 ± 3.85 to 77.78 ± 5.09% during F. covae challenge than the control groups (50.00 ± 3.33%) (p < 0.05).

7.
Foods ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-37430911

ABSTRACT

Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and -48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).

8.
Nano Res ; 15(3): 2196-2225, 2022.
Article in English | MEDLINE | ID: mdl-34659650

ABSTRACT

Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.

9.
Biomed Pharmacother ; 145: 112461, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839253

ABSTRACT

Skin aging is accompanied by an increase in the number of senescent cells, resulting in various pathological outcomes. These include inflammation, impaired barrier function, and susceptibility to skin disorders such as cancer. Kaempferia parviflora (Thai black ginger), a medicinal plant native to Thailand, has been shown to counteract inflammation, cancer, and senescence. This study demonstrates that polymethoxyflavones (5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone) purified from K. parviflora rhizomes suppressed cellular senescence, reactive oxygen species, and the senescence-associated secretory phenotype in primary human dermal fibroblasts. In addition, they increased tropocollagen synthesis and alleviated free radical-induced cellular and mitochondrial damage. Moreover, the compounds mitigated chronological aging in a human ex vivo skin model by attenuating senescence and restoring expression of essential components of the extracellular matrix, including collagen type I, fibrillin-1, and hyaluronic acid. Finally, we report that polymethoxyflavones enhanced epidermal thickness and epidermal-dermal stability, while blocking age-related inflammation in skin explants. Our findings support the use of polymethoxyflavones from K. parviflora as natural anti-aging agents, highlighting their potential as active ingredients in cosmeceutical and nutraceutical products.


Subject(s)
Collagen Type I/metabolism , Extracellular Matrix , Flavonoids/pharmacology , Hyaluronic Acid/metabolism , Skin Aging , Skin , Zingiberaceae , Cell Line , Extracellular Matrix/drug effects , Extracellular Matrix/physiology , Fibrillin-1/metabolism , Fibroblasts/metabolism , Flavones/pharmacology , Geroscience , Humans , Rhizome , Skin/drug effects , Skin/metabolism , Skin Aging/drug effects , Skin Aging/physiology , Thailand
10.
Sci Rep ; 11(1): 21836, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750447

ABSTRACT

Biocompatible materials that act as scaffolds for regenerative medicine are of enormous interest. Hydrogel-nanoparticle composites have great potential in this regard, however evaluations of their wound healing and safety in vivo in animal studies are scarce. Here we demonstrate that a guar gum/curcumin-stabilized silver nanoparticle hydrogel composite is an injectable material with exceptional wound healing and antibacterial properties. We show that the curcumin-bound silver nanoparticles themselves exhibit low cytotoxicity and enhance proliferation, migration, and collagen production in in vitro studies of human dermal fibroblasts. We then show that the hydrogel-nanoparticle composite promotes wound healing in in vivo studies on rats, accelerating wound closure by > 40% and reducing bacterial counts by 60% compared to commercial antibacterial gels. Histopathology indicates that the hydrogel composite enhances transition from the inflammation to proliferation stage of healing, promoting the formation of fibroblasts and new blood vessels, while target gene expression studies confirm that the accelerated tissue remodeling occurs along the normal pathways. As such these hydrogel composites show great promise as wound dressing materials with high antibacterial capacity.


Subject(s)
Metal Nanoparticles/administration & dosage , Silver/administration & dosage , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Collagen/biosynthesis , Curcumin/chemistry , Drug Stability , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Galactans/chemistry , Humans , Hydrogels/chemistry , Male , Mannans/chemistry , Materials Testing , Metal Nanoparticles/chemistry , Nanocomposites/administration & dosage , Nanocomposites/chemistry , Plant Gums/chemistry , Rats , Rats, Wistar , Skin/drug effects , Skin/injuries , Skin/pathology , Tissue Scaffolds/chemistry , Wound Healing/physiology
11.
Vaccines (Basel) ; 9(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34835184

ABSTRACT

Immersion vaccination with a biomimetic mucoadhesive nanovaccine has been shown to induce a strong mucosal immune response against columnaris disease, a serious bacterial disease in farmed red tilapia caused by Flavobacterium columnare. However, the induction of a systemic immune response by the vaccine is yet to be investigated. Here, we examine if a specific humoral immune response is stimulated in tilapia by a biomimetic-mucoadhesive nanovaccine against Flavobacterium columnare using an indirect-enzyme-linked immunosorbent assay (ELISA), serum bactericidal activity (SBA) and the expression of immune-related genes within the head-kidney and spleen, together with assessing the relative percent survival of vaccinated fish after experimentally infecting them with F. columnare. The anti-IgM antibody titer of fish at 14 and 21 days post-vaccination was significantly higher in chitosan complex nanoemulsion (CS-NE) vaccinated fish compared to fish vaccinated with the formalin-killed vaccine or control fish, supporting the serum bactericidal activity results at these time points. The cumulative mortality of the unvaccinated control fish was 87% after challenging fish with the pathogen, while the cumulative mortality of the CS-NE vaccinated group was 24%, which was significantly lower than the formalin-killed vaccinated and control fish. There was a significant upregulation of IgM, IgT, TNF α, and IL1-ß genes in the spleen and kidney of vaccinated fish. Significant upregulation of IgM and IgT genes was observed in the spleen of CS-NE vaccinated fish. The study confirmed the charged-chitosan-based mucoadhesive nanovaccine to be an effective platform for immersion vaccination of tilapia, with fish generating a humoral systemic immune response against columnaris disease in vaccinated fish.

12.
Fish Shellfish Immunol ; 112: 81-91, 2021 May.
Article in English | MEDLINE | ID: mdl-33675991

ABSTRACT

Columnaris, a highly contagious bacterial disease caused by Flavobacterium columnare, is recognized as one of the most important infectious diseases in farmed tilapia, especially during the fry and fingerling stages of production. The disease is associated with characteristic lesions in the mucosa of affected fish, particularly their skin and gills. Vaccines delivered via the mucosa are therefore of great interest to scientists developing vaccines for this disease. In the present study, we characterized field isolates of F. columnare obtained from clinical columnaris outbreaks in red tilapia to select an isolate to use as a candidate for our vaccine study. This included characterizing its colony morphology, genotype and virulence status. The isolate was incorporated into a mucoadhesive polymer chitosan-complexed nanovaccine (CS-NE), the efficacy of which was determined by experimentally infecting red tilapia that had been vaccinated with the nanoparticles by immersion. The experimental infection was performed 30-days post-vaccination (dpv), which resulted in 89% of the unvaccinated control fish dying, while the relative percentage survival (RPS) of the CS-NE vaccinated group was 78%. Histology of the mucosal associated lymphoid tissue (MALT) showed a significantly higher presence of leucocytes and a greater antigen uptake by the mucosal epithelium in CS-NE vaccinated fish compared to control fish and whole cell vaccinated fish, respectively, and there was statistically significant up-regulation of IgT, IgM, TNF α, IL1-ß and MHC-1 genes in the gill of the CS-NE vaccinated group. Overall, the results of our study confirmed that the CS-NE particles achieved better adsorption onto the mucosal surfaces of the fish, elicited great vaccine efficacy and modulated the MALT immune response better than the conventional whole cell-killed vaccine, demonstrating the feasibility of the mucoadhesive nano-immersion vaccine as an effective delivery system for the induction of a mucosal immune response against columnaris disease in tilapia.


Subject(s)
Bacterial Vaccines/pharmacology , Biomimetic Materials/pharmacology , Cichlids/immunology , Fish Diseases/immunology , Immunity, Mucosal , Lymphoid Tissue/immunology , Nanoparticles/administration & dosage , Animals , Bacterial Vaccines/administration & dosage , Biomimetic Materials/administration & dosage , Fish Diseases/microbiology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacterium/physiology , Lymphoid Tissue/drug effects , Vaccination/veterinary
13.
RSC Adv ; 11(15): 8475-8484, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423402

ABSTRACT

Cordycepin or 3'-deoxyadenosine is an interesting anti-cancer drug candidate that is found in abundance in the fungus Cordyceps militaris. It inhibits cellular growth of many cancers including lung carcinoma, melanoma, bladder cancer, and colon cancer by inducing apoptosis, anti-proliferation, anti-metastasis and by arresting the cell cycle. Cordycepin has, however, poor stability and low solubility in water, resulting in loss of its bioactivity. Liposomes can be used to overcome these obstacles. Our aim is to improve cordycepin's anti-colon cancer activity by liposome encapsulation. Cordycepin-encapsulated liposomes were designed and fabricated based on a combination of theoretical and experimental studies. Molecular dynamics (MD) simulations and free energy calculations suggest that phosphatidylcholine (PC) lipid environment is favorable for cordycepin adsorption. Cordycepin passively permeates into PC lipid bilayers without membrane damage and strongly binds to the lipids' polar groups by flipping its deoxyribose sugar toward the bilayer center. Our fabricated liposomes containing 10 : 1 molar ratio of egg yolk PC : cholesterol showed encapsulation efficiency (%EE) of 99% using microfluidic hydrodynamic focusing (MHF) methods. In our in vitro study using the HT-29 colon cancer cell line, cordycepin was able to inhibit growth by induction of apoptosis. Cell viability was significantly decreased below 50% at 125 µg mL-1 dosage after 48 h treatment with non-encapsulated and encapsulated cordycepin. Importantly, encapsulation provided (1) a 2-fold improvement in the inhibition of cancer cell growth at 125 µg mL-1 dosage and (2) 4-fold increase in release time. These in silico and in vitro studies indicate that cordycepin-encapsulated liposomes could be a potent drug candidate for colon cancer therapy.

14.
Colloids Surf B Biointerfaces ; 197: 111369, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33032178

ABSTRACT

Cordycepin, a derivative of the nucleotide adenosine, has displayed several pharmacological activities including enhanced apoptosis and cancer cells inhibition. However, oral administration of cordycepin has limited practical use due to its poor bioavailability in the intestine. Herein, we developed and demonstrated a hybrid nanocarrier system in the form of biloniosome-core/chitosan-shell hybrid nanocarriers (HNCs) in order to improve the bio-characteristics of cordycepin. In this study, HNCs were prepared by using a solvent (ethanol) injection method involving cordycepin as the biloniosome core and mucoadhesive chitosan biopolymer as a coating shell. Our results showed that the cordycepin-loaded HNCs were positively charged with enhanced mucoadhesive characteristics and highly stable in gastric fluid. The increased permeability of cordycepin-loaded HNCs compared with standard cordycepin was confirmed by in vitro intestinal permeation study across the human intestinal barrier. In addition, we demonstrated that the cordycepin-loaded HNCs are able to release their components in an active form resulting in enhanced anti-cancer activity in two-dimensional (2D) cell cultures as well as in three-dimensional (3D) multi-cellular spheroids of colon cancer cells. Further, quantitative real time PCR analysis of apoptotic gene expression revealed that cordycepin HNCs can induce apoptosis in cancer cells by negatively regulating the expression of B-cell lymphoma-extra large (BCL-XL). I Overall our results showed that the hybrid nanocarrier systems represent a promising strategy for improving the bio-characteristics of cordycepin which can be considered as a potential anti-cancer agent for colorectal cancer chemotherapy.


Subject(s)
Chitosan , Administration, Oral , Apoptosis , Deoxyadenosines , Humans
15.
Colloids Surf B Biointerfaces ; 196: 111270, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32777659

ABSTRACT

Cisplatin (Cis) is a widely used chemotherapeutic drug for cancer treatment. However, toxicities and drug resistance limit the use of cisplatin. This study was aimed to improve cisplatin delivery using a targeting strategy to reduce the toxicity. In the present study, combinations of poly lactic-co-glycolic acids (PLGA) and liposomes were used as carriers for cisplatin delivery. In addition, to target the nanoparticle towards tumor cells, the liposome was conjugated with Avastin®, an anti-VEGF antibody. Cisplatin was loaded into PLGA using the double emulsion solvent evaporation method and further encapsulated in an Avastin® conjugated liposome (define herein as L-PLGA-Cis-Avastin®). Their physicochemical properties, including particle size, ζ-potential, encapsulation efficiency and drug release profiles were characterized. In addition, a study of the efficiency of tumor targeted drug delivery was conducted with cervical tumor bearing mice via intravenous injection. The therapeutic effect was examined in a 3D spheroid of SiHa cell line and SiHa cells bearing mice. The L-PLGA-Cis-Avastin® prompted a significant effect on cell viability and triggered cytotoxicity of SiHa cells. A cell internalization study confirmed that the L-PLGA-Cis-Avastin® had greater binding specificity to SiHa cells than those of L-PLGA-Cis or free drug, resulting in enhanced cellular uptake. Tumor targeting specificity was finally confirmed in xenograft tumors. Taken together, this nanoparticle could serve as a promising specific targeted drug for cervical cancer treatment.


Subject(s)
Nanoparticles , Uterine Cervical Neoplasms , Animals , Cell Line, Tumor , Cisplatin , Drug Carriers , Female , Glycols , Humans , Liposomes , Mice , Particle Size , Uterine Cervical Neoplasms/drug therapy
16.
Fish Shellfish Immunol ; 95: 213-219, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31585248

ABSTRACT

Red tilapia (Oreochromis sp.) has become one of the most important fish in aquaculture. Bacterial infection caused by Flavobacterium columnare, the causative agent of columnaris disease, has been now identified as one of the most serious infectious diseases in farmed red tilapia and cause major financial damage to the producers. Among the effective prevention and control strategies, vaccination is one of the most effective approach. As the surface of living fish is covered by mucus and directly associated with the mucosal immunity, we therefore hypothesized that better adsorption on mucosal surfaces and more efficient vaccine efficacy could be enhanced biomimetic nanoparticles mimicking the mucoadhesive characteristic of live F. columnare. In this work, we describe an effective approach to targeted antigen delivery by coating the surface of nanoparticles with mucoadhesive chitosan biopolymer to provide "pathogen-like" properties that ensure nanoparticles binding on fish mucosal membrane. The physiochemical properties of nanovaccines were analyzed, and their mucoadhesive characteristics and immune response against pathogens were also evaluated. The prepared vaccines were nano-sized and spherical as confirmed by scanning electron microscope (SEM). The analysis of hydrodynamic diameter and zeta-potential also suggested the successful modification of nanovaccines by chitosan as indicated by positively charged and the overall increased diameter of chitosan-modified nanovaccines. In vivo mucoadhesive study demonstrated the excellent affinity of the chitosan-modified nanovaccines toward fish gills as confirmed by bioluminescence imaging, fluorescent microscopy, and spectrophotometric quantitative measurement. Following vaccination with the prepared nanovaccines by immersion 30 min, the challenge test was then carried out 30 and 60 days post-vaccination and resulted in high mortalities in the control. The relative percent survival (RPS) of vaccinated fish was greater than 60% for mucoadhesive nanovaccine. Our results also suggested that whole-cell vaccines failed to protect fish from columnaris infection, which is consistent with the mucoadhesive assays showing that whole-cell bacteria were unable to bind to mucosal surfaces. In conclusion, we could use this system to deliver antigen preparation to the mucosal membrane of tilapia and obtained a significant increase in survival compared to controls, suggesting that targeting mucoadhesive nanovaccines to the mucosal surface could be exploited as an effective method for immersion vaccination.


Subject(s)
Bacterial Vaccines/administration & dosage , Chitosan/administration & dosage , Fish Diseases/prevention & control , Flavobacteriaceae Infections/veterinary , Tilapia/immunology , Vaccination/methods , Animals , Aquaculture , Bacterial Vaccines/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Flavobacteriaceae Infections/immunology , Flavobacterium , Gills/immunology , Gills/microbiology , Nanoparticles/administration & dosage , Tilapia/microbiology
17.
Biomolecules ; 9(9)2019 09 16.
Article in English | MEDLINE | ID: mdl-31527550

ABSTRACT

Crinumasiaticum is a perennial herb widely distributed in many warmer regions, including Thailand, and is well-known for its medicinal and ornamental values. Crinum alkaloids contain numerous compounds, such as crinamine. Even though its mechanism of action is still unknown, crinamine was previously shown to possess anticancer activity. In this study, we demonstrate that crinamine was more cytotoxic to cervical cancer cells than normal cells. It also inhibited anchorage-independent tumor spheroid growth more effectively than existing chemotherapeutic drugs carboplatin and 5-fluorouracil or the CDK9 inhibitor FIT-039. Additionally, unlike cisplatin, crinamine induced apoptosis without promoting DNA double-strand breaks. It suppressed cervical cancer cell migration by inhibiting the expression of positive regulators of epithelial-mesenchymal transition SNAI1 and VIM. Importantly, crinamine also exerted anti-angiogenic activities by inhibiting secretion of VEGF-A protein in cervical cancer cells and blood vessel development in zebrafish embryos. Gene expression analysis revealed that its mechanism of action might be attributed, in part, to downregulation of cancer-related genes, such as AKT1, BCL2L1, CCND1, CDK4, PLK1, and RHOA. Our findings provide a first insight into crinamine's anticancer activity, highlighting its potential use as an alternative bioactive compound for cervical cancer chemoprevention and therapy.


Subject(s)
Amaryllidaceae Alkaloids/administration & dosage , Angiogenesis Inhibitors/administration & dosage , Crinum/chemistry , Snail Family Transcription Factors/metabolism , Uterine Cervical Neoplasms/metabolism , Vimentin/metabolism , Amaryllidaceae Alkaloids/pharmacology , Angiogenesis Inhibitors/pharmacology , Animals , Carboplatin/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Plant Extracts/chemistry , Pyridines/pharmacology , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Neoplasms/drug therapy , Zebrafish/embryology
18.
Sci Rep ; 9(1): 8278, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164665

ABSTRACT

Gold nanoparticles (AuNPs) have been extensively used as nanomaterials for theranostic applications due to their multifunctional characteristics in therapeutics, imaging, and surface modification. In this study, the unique functionalities of exosome-derived membranes were combined with synthetic AuNPs for targeted delivery to brain cells. Here, we report the surface modification of AuNPs with brain-targeted exosomes derived from genetically engineered mammalian cells by using the mechanical method or extrusion to create these novel nanomaterials. The unique targeting properties of the AuNPs after fabrication with the brain-targeted exosomes was demonstrated by their binding to brain cells under laminar flow conditions as well as their enhanced transport across the blood brain barrier. In a further demonstration of their ability to target brain cells, in vivo bioluminescence imaging revealed that targeted-exosome coated AuNPs accumulated in the mouse brain after intravenous injection. The surface modification of synthetic AuNPs with the brain-targeted exosome demonstrated in this work represents a highly novel and effective strategy to provide efficient brain targeting and shows promise for the future in using modified AuNPs to penetrate the brain.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Exosomes/chemistry , Metal Nanoparticles/chemistry , Animals , Biological Transport/genetics , Drug Delivery Systems , Exosomes/genetics , Gold/chemistry , Humans , Metal Nanoparticles/administration & dosage , Mice , Neurons/drug effects
19.
Fish Shellfish Immunol ; 86: 635-640, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30528659

ABSTRACT

Vaccination is the most effective approach for prevention of infectious diseases in aquaculture. Although immersion vaccination is more applicable compared to in-feed/oral administration and injection, this method suffers from low potency as the efficiency of uptake of antigens through mucosal membranes is limited. In this study, we have successfully developed a mucoadhesive vaccine delivery system to enhance the efficacy of direct immersion vaccination against Flavobacterium columnare, the causative agent of columnaris disease in red tilapia. A formalin-killed negatively charged, bacterial cell suspension was used to prepare a mucoadhesive vaccine by electrostatic coating with positively charged chitosan. Our results demonstrate that the chitosan-complexed vaccine greatly increases its mucoadhesiveness, thus increasing the chances of vaccine uptake by the gill mucosa and improving the protection obtained against columnaris infection. The surface charge of the chitosan-complexed vaccine was altered from anionic to cationic after chitosan modification. Tilapia were vaccinated with the prepared chitosan-complexed vaccine by immersion. The challenge test was then carried out 30 and 60 days post vaccination, which resulted in a high level of mortalities in the non-vaccinated and uncomplexed vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with the mucoadhesive vaccine. Our results indicated that the naked vaccine failed to protect the fish from columnaris infection, which is consistent with the mucoadhesive assays performed during the study showing that the naked vaccine was unable to bind to mucosal surfaces. This system is therefore an effective method for immersion vaccination in order to deliver the antigen preparation to the mucosal surface membrane of the fish.


Subject(s)
Bacterial Vaccines/therapeutic use , Fish Diseases/prevention & control , Flavobacteriaceae Infections/veterinary , Polymers/chemistry , Tilapia/immunology , Vaccination/methods , Adhesives/chemistry , Animals , Aquaculture , Bacterial Vaccines/chemistry , Chitosan/chemistry , Flavobacteriaceae Infections/prevention & control , Flavobacterium , Gills/immunology , Immersion , Mucous Membrane/metabolism , Static Electricity , Surface Properties , Tilapia/microbiology , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/therapeutic use
20.
Reprod Domest Anim ; 53 Suppl 3: 23-28, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30474326

ABSTRACT

The use of male gonadal tissue as a site for the local delivery of DNA is an interesting concept. Previously, we reported synthesis, physiochemical and biological properties of gonadotropin-releasing hormone (GnRH)-conjugated chitosan as a carrier for DNA delivery to GnRH receptor-overexpressing cells. In this study, the application of modified chitosan as a potential vector for gene delivery to testicular cells was carried out. Transfection efficiency was investigated in mouse-derived spermatogonia cells (GC-1 cells) using green fluorescent protein as a reporter gene. GnRH-conjugated chitosan exhibited higher transfection activity and specificity compared to the unmodified chitosan. Furthermore, the GnRH-modified chitosan showed less cytotoxicity. In conclusion, we have developed and successfully tested the GnRH-modified chitosan for delivery of a transgene of interest to spermatogonia cells in vitro. Such vector could be useful in particular for testis-mediated gene transfer.


Subject(s)
Chitosan/chemistry , Gonadotropin-Releasing Hormone/chemistry , Spermatogonia/cytology , Animals , Cell Line , DNA/administration & dosage , DNA/chemistry , Gene Transfer Techniques/veterinary , Green Fluorescent Proteins/genetics , Male , Mice , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...