Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 112: 51-76, 2023 08.
Article in English | MEDLINE | ID: mdl-37236326

ABSTRACT

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Subject(s)
COVID-19 , Virus Diseases , Mice , Animals , Memory T Cells , Neuroinflammatory Diseases , CD8-Positive T-Lymphocytes , Brain , Immunologic Memory
2.
Pharmaceutics ; 11(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703298

ABSTRACT

The goal of this research was to develop a novel oxygen therapeutic made from a pectin-based hydrogel microcapsule carrier mimicking red blood cells. The study focused on three main criteria for developing the oxygen therapeutic to mimic red blood cells: size (5-10 µm), morphology (biconcave shape), and functionality (encapsulation of oxygen carriers; e.g., hemoglobin (Hb)). The hydrogel carriers were generated via the electrospraying of the pectin-based solution into an oligochitosan crosslinking solution using an electrospinning setup. The pectin-based solution was investigated first to develop the simplest possible formulation for electrospray. Then, Design-Expert® software was used to optimize the production process of the hydrogel microcapsules. The optimal parameters were obtained through the analysis of a total of 17 trials and the microcapsule with the desired morphology and size was successfully prepared under the optimized condition. Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemistry of the microcapsules. Moreover, the encapsulation of Hb into the microcapsule did not adversely affect the microcapsule preparation process, and the encapsulation efficiency was high (99.99%). The produced hydrogel microcapsule system shows great promise for creating a novel oxygen therapeutic.

3.
Nanomedicine ; 18: 326-335, 2019 06.
Article in English | MEDLINE | ID: mdl-30419362

ABSTRACT

Antigen presenting cells (APCs) initiate the immune response against cancer by engulfing and presenting tumor antigens to T cells. Our lab has recently developed a liposomal nanoparticle that binds complement C3 proteins, allowing it to bind to the complement C3 receptors of APCs and directly deliver antigenic peptides. APCs were shown to internalize and process complement C3-bound liposomes containing ovalbumin (OVA), resulting in a significant increase in activated T cells that recognize OVA. Mice bearing A20-OVA lymphoma tumors were treated with OVA-loaded C3-liposomes, which led to reduced tumor growth in both treated and distal tumors in all mice. Peripheral blood from treated mice had a lower percentage of immunosuppressive myeloid derived suppressor cells (MDSCs), a higher percentage of B cells, and increased anti-OVA IgG1 levels compared to control mice. These results indicate that C3-liposome delivery of tumor antigen to APCs initiates a potent and systemic antitumor immune response.


Subject(s)
Complement C3/metabolism , Liposomes/chemistry , Neoplasms/pathology , Ovalbumin/administration & dosage , Animals , Antigen-Presenting Cells/metabolism , Cell Line, Tumor , Cell Proliferation , Dendritic Cells/metabolism , Endocytosis , Humans , Immunoglobulin G/blood , Liver/enzymology , Lymphocyte Activation/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/blood , T-Lymphocytes/immunology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...