Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Res ; 18(6): 423-34, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21900213

ABSTRACT

The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae/genetics , Chromosome Inversion , Chromosomes, Fungal , Genes, Fungal , Molecular Sequence Data , Open Reading Frames , Phylogeny , Saccharomyces cerevisiae/classification , Sequence Analysis, DNA
2.
J Biosci Bioeng ; 107(4): 383-93, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19332297

ABSTRACT

A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.


Subject(s)
Quantitative Trait Loci , Saccharomyces cerevisiae/genetics , Wine/analysis , Alcoholic Beverages/analysis , Alcoholic Beverages/standards , Chromosome Mapping , DNA, Fungal/genetics , Fermentation/genetics , Genome, Fungal , Genotype , Microsatellite Repeats/genetics , Wine/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...