Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459011

ABSTRACT

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Subject(s)
DNA Replication , Neoplasms , Animals , Humans , Mice , DNA , Genomic Instability , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Immunity, Innate , MRE11 Homologue Protein/metabolism , Neoplasms/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
2.
Prog Biophys Mol Biol ; 163: 143-159, 2021 08.
Article in English | MEDLINE | ID: mdl-33675849

ABSTRACT

Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and "door stopper" strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.


Subject(s)
DNA Repair , Uracil-DNA Glycosidase , Catalytic Domain , Cytidine Deaminase , DNA Damage , Humans , Minor Histocompatibility Antigens , Uracil , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
3.
Nat Commun ; 10(1): 5654, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827085

ABSTRACT

Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.


Subject(s)
DNA Replication/drug effects , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Neoplasms/genetics , Small Molecule Libraries/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/physiopathology , Poly ADP Ribosylation/drug effects , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Small Molecule Libraries/chemistry
4.
FEBS Lett ; 591(20): 3378-3390, 2017 10.
Article in English | MEDLINE | ID: mdl-28862749

ABSTRACT

We coupled peptides from a CNBr digest of signal-sequenceless maltose-binding protein (MBP) to a surface plasmon resonance chip. SecA-N95, SecA-N68, and SecA-DM (which consists of only the DEAD Motor domains NBD1 and NBD2) bound to the immobilized peptides; ADP weakened the binding. SecA-DM, which lacks the 'preprotein cross-linking domain' (PPXD), displayed the most extensive binding, while an MBP-PPXD chimera showed no binding, demonstrating that the PPXD does not contribute to the binding. We characterized the sequence specificity using oriented peptide libraries; these results enabled synthesis of a 20-residue peptide that was used to recapitulate the results obtained with MBP-derived peptides. This study shows that there is a promiscuous and nucleotide-modulated peptide-binding site in the DEAD Motor domains of SecA.


Subject(s)
Adenosine Triphosphatases/chemistry , Bacterial Proteins/chemistry , Escherichia coli/metabolism , Maltose-Binding Proteins/chemistry , Peptide Library , SEC Translocation Channels/chemistry , Thermus thermophilus/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Hydrophobic and Hydrophilic Interactions , Kinetics , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Models, Molecular , Mutation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , SecA Proteins , Static Electricity , Substrate Specificity , Thermodynamics , Thermus thermophilus/genetics
5.
Cell Rep ; 8(1): 177-89, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24953651

ABSTRACT

Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Histone Acetyltransferases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Recombinational DNA Repair , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded , G1 Phase Cell Cycle Checkpoints , G2 Phase Cell Cycle Checkpoints , HEK293 Cells , Histone Acetyltransferases/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mutation , Phosphorylation , Tumor Suppressor p53-Binding Protein 1
6.
Proc Natl Acad Sci U S A ; 111(12): E1072-81, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616510

ABSTRACT

The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP.


Subject(s)
CREB-Binding Protein/metabolism , Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Histones/metabolism , Molecular Chaperones/metabolism , Acetylation , Animals , Binding Sites , CREB-Binding Protein/chemistry , Cell Cycle Proteins/chemistry , Drosophila , HeLa Cells , Humans , Models, Molecular , Protein Binding
7.
Cell Cycle ; 13(3): 440-52, 2014.
Article in English | MEDLINE | ID: mdl-24275038

ABSTRACT

The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.


Subject(s)
Histones/metabolism , Mitosis , Threonine/metabolism , Amino Acid Sequence , Antibodies/immunology , Antibody Specificity , Cell Line, Tumor , Chromatin/metabolism , Histones/genetics , Histones/immunology , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Nucleosomes/metabolism , Phosphorylation , Protein Binding
8.
Nat Commun ; 4: 1704, 2013.
Article in English | MEDLINE | ID: mdl-23591871

ABSTRACT

The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.


Subject(s)
Dynamins/metabolism , Membrane Fusion , SNARE Proteins/metabolism , Dynamins/physiology , Protein Binding , SNARE Proteins/physiology
9.
Bioarchitecture ; 2(2): 59-69, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22754631

ABSTRACT

SNARE complexes mediate membrane fusion in the endomembrane system. They consist of coiled-coil bundles of four helices designated as Qa, Qb, Qc and R. A critical intermediate in the fusion pathway is the trans-SNARE complex generated by the assembly of SNAREs residing in opposing membranes. Mechanistic details of trans-SNARE complex formation and topology in a physiological system remain largely unresolved. Our studies on native yeast vacuoles revealed that SNAREs alone are insufficient to form trans-SNARE complexes and that additional factors, potentially tethering complexes and Rab GTPases, are required for the process. Here we report a novel finding that a HOPS tethering complex dimer catalyzes Rab GTPase-dependent formation of a topologically preferred QbQcR-Qa trans-SNARE complex.

10.
PLoS Biol ; 10(1): e1001243, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22272185

ABSTRACT

SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a), Q(b), and Q(c)) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a) SNARE, leaving behind a Q(bc)R subcomplex. This subcomplex serves as an acceptor for a Q(a) SNARE from the opposite membrane, leading to Q(a)-Q(bc)R trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bc)R cis-complex and the formation of the Q(a)-Q(bc)R trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.


Subject(s)
Intracellular Membranes/metabolism , Membrane Fusion , SNARE Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Alleles , Kinetics , Models, Biological , Multiprotein Complexes/metabolism , Mutation/genetics , Oxidation-Reduction , Protein Binding , Protein Stability , Vacuoles/metabolism , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...