Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 11(8): e201700343, 2018 08.
Article in English | MEDLINE | ID: mdl-29603902

ABSTRACT

The effects of light-driven enhancement of Evans Blue dye complexes with blood plasma proteins were observed for the first time, both in vitro and in vivo. The possible background of the effect concerns the photochemical cis-trans isomerization of the azo dye molecules. The effect was induced in the solution with a red laser with a wavelength of 638 nm, which corresponds to the peak of the dye absorption. The lifetime of the enhanced fluorescence is approximately 1 second and enables its use as an optically tagged molecular flow tracer for blood flow velocity measurements. Utilizing the effect, we performed for the first time the intravital molecular tagging velocimetry of the blood velocity in blood vessels in a living animal. The results of the measurements of the blood flow velocities in the cerebral veins of a group of healthy mice are presented.


Subject(s)
Cerebrovascular Circulation , Evans Blue/metabolism , Hemorheology , Animals , Male , Mice
2.
J Biophotonics ; 11(8): e201700287, 2018 08.
Article in English | MEDLINE | ID: mdl-29380947

ABSTRACT

A new application of the photodynamic treatment (PDT) is presented for the opening of blood-brain barrier (BBB) and the brain clearing activation that is associated with it, including the use of gold nanoparticles as emerging photosensitizer carriers in PDT. The obtained results clearly demonstrate 2 pathways for the brain clearing: (1) using PDT-opening of BBB and intravenous injection of FITC-dextran we showed a clearance of this tracer via the meningeal lymphatic system in the subdural space; (2) using optical coherence tomography and intraparenchymal injection of gold nanorods, we observed their clearance through the exit gate of cerebral spinal fluid from the brain into the deep cervical lymph node, where the gold nanorods were accumulated. These data contribute to a better understanding of the cerebrovascular effects of PDT and shed light on mechanisms, underlying brain clearing after PDT-related opening of BBB, including clearance from nanoparticles as drug carriers.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Photochemotherapy , Animals , Biological Transport/radiation effects , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/drug effects , Gold/chemistry , Gold/metabolism , Gold/pharmacology , Lymphatic System/drug effects , Lymphatic System/metabolism , Lymphatic System/radiation effects , Male , Metal Nanoparticles , Mice , Permeability/drug effects , Permeability/radiation effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Tomography, Optical Coherence
3.
Front Physiol ; 7: 210, 2016.
Article in English | MEDLINE | ID: mdl-27378933

ABSTRACT

In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health.

SELECTION OF CITATIONS
SEARCH DETAIL
...