Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 348: 129017, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33582448

ABSTRACT

Extruded wheat starch (ES) was obtained by a single-screw extruder to determine its effect on the farinograph, structural properties and baking behaviors of wheat dough. XRD analysis showed that increasing extrusion temperature made the crystalline peaks less pronounced due to the partial gelatinization. In terms of FTIR results, the molecular order of extruded starch was lower than that of native starch. The dough development time was decreased from 3.2 min to 2.7 min while the stability time was increased from 14.4 min to 15.5 min, as 70 ES were added. It was accompanied with increasing levels of α-helix and ß-turn transferred from the decreased content of random coil and ß -sheet. These effects in bread were to increase loaf volume and reduced loaf hardness. These results indicated that extruded starch had a good potential for producing a high-quality bread.


Subject(s)
Cooking , Flour/analysis , Starch/chemistry , Triticum/chemistry , Bread/analysis , Hardness , Temperature
2.
Chemosphere ; 252: 126567, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32443265

ABSTRACT

Microplastic pollution is an important issue for environmental management as their ubiquity in marine and freshwaters has been confirmed. Pollution sources are key to understanding how microplastics travel from land to open oceans. Given that information regarding microplastic transport from diffuse sources is limiting, we conducted a study on roadside dust from rural and urban Victoria, Australia, over two seasons. Any deposited fugitive dust and particulate matter may also be present in our samples. The average microplastic abundance over two seasons ranged from 20.6 to 529.3 items/kg (dry weight based), with a predominant portion of fibers and items less than 1 mm. Polyester and polypropylene were the dominant polymer types (26%) while cotton and cellulose were the most common non-plastic items (27%). Sampling sites displayed consistent microplastic abundances over time and shared similar patterns in size, shape and polymer composition. Multiple correlation and principal component analysis suggest that urbanization and rainfall are important influences to roadside microplastic accumulation. The observed microplastic hotspots were generally located within close vicinity of areas where urban intensive land use and regional population sizes are high. Microplastics accumulated on roads and road verges during periods of dry weather and were flushed away during heavy storms while the corresponding trigger value was unknown. Monitoring roadside dust can be considered as an initial and cost-effective screening of microplastic pollution in urban areas. Further efforts should be made to optimize the methodologies and we advocate prolonged sampling schemes for roadside dust monitoring.


Subject(s)
Dust/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Microplastics/analysis , Environmental Pollution/analysis , Fresh Water , Oceans and Seas , Particulate Matter/analysis , Plastics/analysis , Polypropylenes , Urbanization , Victoria
3.
Environ Pollut ; 259: 113865, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31891912

ABSTRACT

Compared to marine microplastics research, few studies have bio-monitored microplastics in inland waters. It is also important to understand the microplastics' uptake and their potential risks to freshwater species. The Australian glass shrimp Paratya australiensis (Family: Atyidae) is commonly found in fresh waterbodies in eastern Australia, and are sensitive to anthropogenic stressors but have a wide tolerance range to the natural environmental conditions. This study aimed to understand the microplastics' occurrence and types in water samples and the shrimp P. australiensis, and identify if the shrimp could be a suitable bioindicator for microplastic pollution. Surface water and P. australiensis across ten urban and rural freshwater sites in Victoria were sampled. In total, 30 water samples and 100 shrimp were analysed for microplastic content, and shrimp body weights and sizes were also recorded. Microplastics were picked, photographed and identified using FT-IR microscopy: in water samples, 57.9% of items including suspect items were selected to identify; all microplastics found in shrimp samples were identified. Microplastics were present in the surface waters of all sites, with an average abundance of 0.40 ± 0.27 items/L. A total of 36% of shrimp contained microplastics with an average of 0.52 ± 0.55 items/ind (24 ± 31 items/g). Fibre was the most common shape, and blue was the most frequent colour in both water and shrimp samples. The dominant plastic types were polyester in water samples, and rayon in shrimp samples. Even though results from this study show a relatively low concentration of microplastics in water samples in comparison with global studies, it is worth noticing that microplastics were regularly detected in fresh waterbodies in Victoria, Australia. Compared with water samples, shrimp contained a wider variety of plastic types, suggesting they may potentially behave as passive samplers of microplastics pollution in freshwater environments.


Subject(s)
Environmental Monitoring , Fresh Water , Microplastics , Water Pollutants, Chemical , Animals , Fresh Water/chemistry , Microplastics/analysis , Spectroscopy, Fourier Transform Infrared , Victoria , Water Pollutants, Chemical/analysis
4.
Water Res ; 168: 115140, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31604177

ABSTRACT

The mitigation of microplastic pollution in the environment calls for a better understanding of the sources and transportation, especially from land sources to the open ocean. We conducted a large-scale investigation of microplastic pollution across the Greater Melbourne Area and the Western Port area, Australia, spanning gradients of land-use from un-developed catchments in conservation areas to more heavily-developed areas. Microplastics were detected in 94% of water samples and 96% of sediment samples, with abundances ranging from 0.06 to 2.5 items/L in water and 0.9 to 298.1 items/kg in sediment. The variation of microplastic abundance in sediments was closely related to that of the overlying waters. Fiber was the most abundant (89.1% and 68.6% of microplastics in water and sediment respectively), and polyester was the dominant polymer in water and sediment. The size of more than 40% of all total microplastics observed was less than 1 mm. Both light and dense polymers of different shapes were more abundant in sediments than those in water, indicating that there is microplastic accumulation in sediments. The abundance of microplastics was higher near coastal cities than at less densely-populated inland areas. A spatial analysis of the data suggests that the abundance of microplastics increases downstream in rivers and accumulates in estuaries and the lentic reaches of these rivers. Correlation and redundancy analysis were used to explore the associations between microplastic pollution and different land-use types. More microplastics and polymer types were found at areas with large amounts of commercial, industrial and transport activities. Microplastic abundances were also correlated with mean particle size. Microplastic hotspots within a coastal metropolis might be caused by a combination of natural accumulation via hydrological dynamics and contribution from increasing anthropogenic influences. Our results strongly suggest that coastal metropolis superimposed on increasing microplastic levels in waterbodies from inland areas to the estuaries and open oceans.


Subject(s)
Plastics , Water Pollutants, Chemical , Australia , Cities , Environmental Monitoring , Geologic Sediments , Oceans and Seas
5.
Chemosphere ; 228: 65-74, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31022621

ABSTRACT

Biomonitoring microplastics in freshwater ecosystems has been insufficient in comparison with its practice in marine environments. It is an important first step to understand microplastic uptake in organisms when assessing risk in natural freshwater habitats. We conducted microplastic biomonitoring within the Greater Melbourne Area; where the microplastic baseline pollution in freshwater organisms was largely unknown. A common noxious fish species, Gambusia holbrooki, was targeted. Individuals (n = 180) from nine wetlands were analyzed. Uptake pathway, size, weight and gender were examined in relation to microplastic uptake in the body (presumed uptake via gut) and head (presumed uptake via gills). On average, 19.4% of fish had microplastics present in their bodies with an abundance of 0.6 items per individual (items/ind) and 7.2% of fish had microplastics in their heads with an abundance of 0.1 items/ind. Polyester was the dominant plastic type and fibers were the most common shape. The amount of microplastics in Gambusia holbrooki in current study is relatively low in a global comparison. The bodies of fish contained more microplastics on average than heads, and the size of microplastics detected in heads were smaller than those found in bodies. Microplastic uptake was directly proportional to size and weight. Furthermore, female individuals showed a tendency to ingest more microplastics than males. Laboratory experiments under controlled conditions are suggested to further explore such relationships. Our findings are important to understanding the potential ecological risks posed by microplastics to organisms in freshwater environments and provide suitable methodologies to conduct biomonitoring in future investigations.


Subject(s)
Cyprinodontiformes/metabolism , Environmental Monitoring/methods , Plastics/pharmacokinetics , Wetlands , Animals , Australia , Ecosystem , Female , Fresh Water/chemistry , Male , Sex Factors , Tissue Distribution , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/pharmacokinetics
6.
Chemosphere ; 149: 91-100, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26855211

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) contamination was investigated in concurrently sampled surface water, suspended particulate matter (SPM) and sediment of Daliao River estuary and the adjacent area, China. The total concentrations of PAHs ranged from 71.12 to 4255.43 ng/L in water, from 1969.95 to 11612.21 ng/L in SPM, and from 374.84 to 11588.85 ng/g dry weight (dw) in sediment. Although the 2-3 ring PAHs were main PAH congeners in water and SPM, the 4-6 ring PAHs were also detected and their distribution was site-specific, indicating a very recent PAHs input around the area since they were hydrophobic. The PAHs pollution was identified as mixed combustion and petroleum sources. Based on species sensitivity distribution (SSD), the ecological risk in SPM from 82% stations was found to be higher obviously than that in water. The risk in water was basically ranked as medium, while the risk in SPM was ranked as high. Analysis with sediment quality guidelines (SQGs) indicated that negative eco-risk occasionally occurred in about 50% stations, while negative eco-risk frequently occurred in about 3% stations only caused by Phenanthrene(Phe) and Dibenzo(a,h)anthracene(DBA). Here freshwater acute effects data together with saltwater data were used for SSD model. And this method could quickly give the rational risk information, and achieved our objective that compared the spatial difference of risk levels among three compartments. The results confirmed that the use of freshwater acute effects data from the ECOTOX database together with saltwater effects data is acceptable for risk assessment purposes in estuary.


Subject(s)
Environmental Monitoring , Estuaries , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , China , Ecology , Geologic Sediments/chemistry , Particulate Matter/analysis , Petroleum/analysis , Phenanthrenes , Risk Assessment , Rivers/chemistry , Water/analysis
7.
Mar Pollut Bull ; 88(1-2): 215-23, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25256298

ABSTRACT

The microbial community and the nirS- and nirK-encoding denitrifiers in the intertidal sediments along Laizhou Bay in China were studied using pyrosequencing and real-time quantitative PCR (qPCR), respectively. There were three primary intertidal zones: Laizhou (La), Weifang Harbor (We), and Dongying (Do). Significant differences in composition and abundances at the different taxonomic levels were observed among the three bacterial communities. The qPCR results indicated that the nirS gene abundance varied from 8.67 × 10(5) to 5.68 × 10(6)copies/gwet weight (ww), whereas the nirK gene abundance varied from 1.26 × 10(5) to 1.89 × 10(6)copies/gww. The canonical correlation analysis (CCA) indicated that the sand percentage was the most important factor in shaping the bacterial community followed by silt percentage, NO2(-), TOC, DO, pH, and clay percentage, whereas the clay percentage, pH, NO3(-), DO, NO2(-), TOC, silt percentage, and sand percentage were the most important factors associated with regulating the abundance of nirS- and nirK-encoding denitrifiers.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Geologic Sediments/microbiology , Nitrite Reductases/genetics , Aluminum Silicates , Bacteria/classification , Bays/microbiology , Biodiversity , China , Clay , Denitrification , Genes, Bacterial , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Nitrates/analysis , Nitrite Reductases/metabolism , Real-Time Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...