Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Article in English | MEDLINE | ID: mdl-38651136

ABSTRACT

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Subject(s)
Inflammation , Membrane Proteins , Microglia , NF-E2-Related Factor 2 , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Signal Transduction/drug effects , Microglia/drug effects , Microglia/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice, Inbred C57BL , Heme Oxygenase-1/metabolism , Pain/drug therapy , Pain/metabolism , Freund's Adjuvant , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Neuroreport ; 35(6): 343-351, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526969

ABSTRACT

Inflammatory pain, the most prevalent disease globally, remains challenging to manage. Electroacupuncture emerges as an effective therapy, yet its underlying mechanisms are not fully understood. This study investigates whether adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-regulated silent information regulator 1 (SIRT1) contributes to electroacupuncture's antinociceptive effects by modulating macrophage/microglial polarization in the spinal dorsal horn of a mouse model of inflammatory pain. In this study, mice, introduced to inflammatory pain through subcutaneous injections of complete freund's adjuvant (CFA) in the plantar area, underwent electroacupuncture therapy every alternate day for 30-min sessions. The assessment of mechanical allodynia and thermal hyperalgesia in these subjects was carried out using paw withdrawal frequency and paw withdrawal latency measurements, respectively. Western blot analysis measured levels of AMPK, phosphorylation-adenosine 5'-monophosphate (AMP)-activated protein kinase, SIRT1, inducible nitric oxide synthase, cluster of differentiation 86, arginase 1, and interleukin 10. In contrast to the group treated solely with CFA, the cohort receiving both CFA and electroacupuncture demonstrated notable decreases in both thermal hyperalgesia and mechanical allodynia. This was accompanied by a marked enhancement in AMPK phosphorylation levels. AMPK knockdown reversed electroacupuncture's analgesic effects and reduced M2 macrophage/microglial polarization enhancement. Additionally, AMPK knockdown significantly weakened electroacupuncture-induced SIRT1 upregulation, and EX-527 injection attenuated electroacupuncture's facilitation of M2 macrophage/microglial polarization without affecting AMPK phosphorylation levels. Furthermore, combining electroacupuncture with SRT1720 enhanced the analgesic effect of SRT1720. Our findings suggest that AMPK regulation of SIRT1 plays a critical role in electroacupuncture's antinociceptive effect through the promotion of M2 macrophage/microglial polarization.


Subject(s)
Electroacupuncture , Hyperalgesia , Humans , Rats , Mice , Animals , Hyperalgesia/therapy , Hyperalgesia/chemically induced , AMP-Activated Protein Kinases/therapeutic use , Microglia , Sirtuin 1 , Rats, Sprague-Dawley , Pain/chemically induced , Analgesics/therapeutic use , Adenosine , Macrophages , Inflammation/chemically induced
3.
Biochem Biophys Res Commun ; 656: 63-69, 2023 05 14.
Article in English | MEDLINE | ID: mdl-36958256

ABSTRACT

PURPOSE: The aim of this study is to investigate whether p66shc is involved in inflammatory pain and the potential molecular mechanisms of p66shc in inflammatory pain. METHODS: Inflammatory pain model was established by complete Freund's adjuvant (CFA) injection. Paw withdrawal latency (PWL) and paw withdrawal frequency (PWF) was recorded. The expression of spinal p66shc were determined by immunohistochemical staining, immunofluorescence staining. P66shc knockdown was performed by an adeno-associated virus (AAV) vector infusion. NLRP3 inflammasome complexes were determined by Western blot. DHE staining was used to evaluate reactive oxygen species (ROS) generation. RESULTS: P66Shc expression was progressively elevated in spinal cord of inflammatory pain mice, and p66Shc knockdown in vivo significantly attenuated CFA injection triggers hyperalgesia. Furthermore, knockdown of p66Shc significantly inhibited ROS production and NOD-like receptor protein 3 (NLRP3) inflammasome activation, which were reversed by a ROS donor (t-BOOH). However, post-treatment with nigericin, a agonist of NLRP3, reversed AAV-shP66shc analgesic effect. CONCLUSION: Spinal p66shc may facilitate the development of inflammatory pain by promoting the activation of NLRP3 inflammasome through ROS.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Freund's Adjuvant , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Inflammation/metabolism , Pain/metabolism , Hyperalgesia/metabolism , Spinal Cord/metabolism
4.
BMC Anesthesiol ; 17(1): 128, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28915792

ABSTRACT

BACKGROUND: The effectiveness of a combination of a lipid emulsion with epinephrine in reversing local anesthetic-induced cardiac arrest has been confirmed. The combination of a lipid emulsion with levosimendan, was shown to be superior to administration of a lipid emulsion alone with regard to successful resuscitation. In this study, we compared the reversal effects of levosimendan, epinephrine, and a combination of the two agents in lipid-based resuscitation in a rat model of bupivacaine-induced cardiac arrest. METHODS: Fifty-four adult male Sprague-Dawley rats were subjected to bupivacaine (15 mg·kg-1) -induced asystole and were then randomly divided into 3 groups. A lipid emulsion was used as the basic treatment, and administration of drug combinations varied in each group as follows: (1) levosimendan combined with epinephrine (LiEL); (2) epinephrine (LiE); and (3) levosimendan (LiL). The resuscitation outcomes were recorded and included the rate of return of spontaneous circulation (ROSC) and survival at 40 min, time to first heartbeat, time to ROSC, and cumulative dose of epinephrine. We calculated the wet-to-dry ratio of the lung, blood gas values at 40 min and bupivacaine concentration of cardiac tissue and plasma. RESULTS: The rates of ROSC in LiEL and LiE groups were higher than LiL group (P < 0.001; LiEL vs LiL, P = 0.001; LiE vs LiL, P = 0.007). The survival rate in LiEL group was higher than LiE group (P = 0.003; LiEL vs LiE, P = 0.008; LiEL vs LiL, P = 0.001). The time to first heart beat in LiEL group was shorter than LiE, LiL groups. (P < 0.001; LiE vs LiEL, P = 0.001; LiL vs LiEL, P < 0.001). The time to ROSC in LiEL group was shorter than LiE, LiL groups (P < 0.001; LiEL vs LiE, P < 0.001; LiEL vs LiL, P < 0.001). The result was similar for the bupivacaine concentration of cardiac tissue and plasma (cardiac tissue: P = 0.002; plasma: P = 0.011). Furthermore, there were significant differences in the blood-gas values at 40 min, wet-to-dry lung weight ratio, and ratio of damaged alveoli among groups. The LiEL group had the best result for all parameters (P < 0.01, P = 0.008, P < 0.001, respectively). Additionally, significantly less epinephrine was used in the LiEL group (P < 0.001). CONCLUSIONS: Levosimendan combined with epinephrine may be superior to either drug alone for lipid-based resuscitation in a rat model of bupivacaine-induced cardiac arrest. The drug combination was associated with a higher survival rate as well as decreased epinephrine consumption and lung damage.


Subject(s)
Bupivacaine/toxicity , Cardiopulmonary Resuscitation/methods , Epinephrine/administration & dosage , Fat Emulsions, Intravenous/administration & dosage , Heart Arrest/drug therapy , Hydrazones/administration & dosage , Pyridazines/administration & dosage , Anesthetics, Local/toxicity , Animals , Anti-Arrhythmia Agents/administration & dosage , Drug Therapy, Combination , Heart Arrest/chemically induced , Heart Arrest/physiopathology , Heart Arrest, Induced/methods , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Simendan
5.
Reg Anesth Pain Med ; 40(3): 223-31, 2015.
Article in English | MEDLINE | ID: mdl-25675288

ABSTRACT

BACKGROUND AND OBJECTIVES: The medical community commonly uses lipid emulsion combined with epinephrine in local anesthetic-induced cardiac arrest, but the optimal timing of epinephrine administration relative to lipid emulsion is currently unknown and needs to be determined. METHODS: Thirty adult male Sprague-Dawley rats were subjected to bupivacaine-induced asystole and were then randomly divided into 3 groups. The temporal administration of epinephrine varied in each group: (1) immediately after the completion of the initial bolus of lipid emulsion therapy (postILE0); (2) immediately after cardiac arrest before the initial bolus of lipid emulsion (preILE); or (3) 1 minute after the completion of the initial bolus of lipid emulsion (postILE1). External chest compression was administered until the return of spontaneous circulation or the end of a 20-minute resuscitation period. RESULTS: The postILE0, preILE, and postILE1 groups displayed different survival rates (100%, 30%, and 40%; P = 0.003). After return of spontaneous circulation, the rate-pressure product of the postILE0 group was higher than that of the postILE1 group (P < 0.001). Wet-to-dry lung weight ratio of preILE and postILE1 groups was higher than that of the postILE0 group (P < 0.05). The rate of damaged alveoli of the postILE0 group was lower than those of the preILE (P = 0.001) and postILE1 (P < 0.001) groups. Concentrations of bupivacaine in the cardiac tissues of the postILE0 group were lower than that of the postILE1 group (P = 0.01). CONCLUSIONS: In the rat model of bupivacaine-induced cardiac arrest, the optimal timing for the administration of epinephrine to produce best outcomes of successful cardiopulmonary resuscitation is immediately after the completion of the lipid emulsion bolus. This optimal timing/therapeutic window is of paramount importance.


Subject(s)
Bupivacaine/administration & dosage , Epinephrine/therapeutic use , Fat Emulsions, Intravenous/therapeutic use , Heart Arrest/therapy , Resuscitation/methods , Vasoconstrictor Agents/therapeutic use , Anesthetics, Local/administration & dosage , Animals , Disease Models, Animal , Heart Arrest, Induced , Male , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...