Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(14): 5783-5795, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36977356

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most promising herbicide targets for the development of agricultural chemicals owing to its unique mechanism of action in plants. We previously reported on the co-crystal structure of Arabidopsis thaliana (At) HPPD complexed with methylbenquitrione (MBQ), an inhibitor of HPPD that we previously discovered. Based on this crystal structure, and in an attempt to discover even more effective HPPD-inhibiting herbicides, we designed a family of triketone-quinazoline-2,4-dione derivatives featuring a phenylalkyl group through increasing the interaction between the substituent at the R1 position and the amino acid residues at the active site entrance of AtHPPD. Among the derivatives, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(1-phenylethyl)quinazoline-2,4(1H,3H)-dione (23) was identified as a promising compound. The co-crystal structure of compound 23 with AtHPPD revealed that hydrophobic interactions with Phe392 and Met335, and effective blocking of the conformational deflection of Gln293, as compared with that of the lead compound MBQ, afforded a molecular basis for structural modification. 3-(1-(3-Fluorophenyl)ethyl)-6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (31) was confirmed to be the best subnanomolar-range AtHPPD inhibitor (IC50 = 39 nM), making it approximately seven times more potent than MBQ. In addition, the greenhouse experiment showed favorable herbicidal potency for compound 23 with a broad spectrum and acceptable crop selectivity against cotton at the dosage of 30-120 g ai/ha. Thus, compound 23 possessed a promising prospect as a novel HPPD-inhibiting herbicide candidate for cotton fields.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Herbicides , Herbicides/chemistry , Molecular Structure , Structure-Activity Relationship , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Arabidopsis/metabolism , Gossypium/metabolism , Quinazolines/chemistry
2.
J Agric Food Chem ; 71(2): 1170-1177, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36599124

ABSTRACT

High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Biological Products , Herbicides , Molecular Structure , Structure-Activity Relationship , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Herbicides/chemistry
4.
J Agric Food Chem ; 69(20): 5734-5745, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33999624

ABSTRACT

Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 µM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 µM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Aminopyridines , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Phenylpyruvic Acids , Plant Weeds/metabolism , Structure-Activity Relationship
5.
J Agric Food Chem ; 69(1): 459-473, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33395281

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been recognized as one of the most promising targets in the field of herbicide innovation considering the severity of weed resistance currently. In a persistent effort to develop effective HPPD-inhibiting herbicides, a structure-guided strategy was carried out to perform the structural optimization for triketone-quinazoline-2,4-diones, a novel HPPD inhibitor scaffold first discovered in our lab. Herein, starting from the crystal structure of Arabidopsis thaliana (At)HPPD complexed with 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione (MBQ), three subseries of quinazoline-2,4-dione derivatives were designed and prepared by optimizing the hydrophobic interactions between the side chain of the core structure at the R1 position and the hydrophobic pocket at the active site entrance of AtHPPD. 6-(2-Hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)quinazoline-2,4(1H,3H)-dione (60) with the best inhibitory activity against AtHPPD was identified to be the first subnanomolar-range AtHPPD inhibitor (Ki = 0.86 nM), which significantly outperformed that of the lead compound MBQ (Ki = 8.2 nM). Further determination of the crystal structure of AtHPPD in complex with compound 60 (1.85 Å) and the binding energy calculation provided a molecular basis for the understanding of its high efficiency. Additionally, the greenhouse assay indicated that 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-propylquinazoline-2,4(1H,3H)-dione (28) and compound 60 showed acceptable crop safety against peanut and good herbicidal activity with a broad spectrum. Moreover, compound 28 also showed superior selectivity for wheat at the dosage of 120 g ai/ha and favorable herbicidal efficacy toward the gramineous weeds at the dosage of as low as 30 g ai/ha. We believe that compounds 28 and 60 have promising prospects as new herbicide candidates for wheat and peanut fields.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Silicon/chemistry , Silicon/pharmacology , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Arabidopsis/chemistry , Arabidopsis/drug effects , Arabidopsis/enzymology , Kinetics , Plant Weeds/drug effects , Plant Weeds/growth & development , Structure-Activity Relationship , Weed Control
SELECTION OF CITATIONS
SEARCH DETAIL
...