Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 12(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37238886

ABSTRACT

Aronia melanocarpa polyphenols (AMP) have good nutritional values and functions. This study aimed to explore the printability and storage properties of AM gels in 3D food printing (3DFP). Therefore, 3DFP was performed on a loaded AMP gel system to determine its textural properties, rheological properties, microstructure, swelling degree and storage performance. The results revealed that the best loading AMP gel system to meet the printability requirements of 3DFP processing was AM fruit pulp:methylcellulose:pea albumin: hyaluronic acid = 100:14:1:1. Compared with other ratios and before 3DFP processing, the best loading AMP gel system processed by 3DFP exhibited the lowest deviation of 4.19%, the highest hardness, the highest elasticity, the least adhesion, a compact structure, uniform porosity, difficulty in collapsing, good support, a high degree of crosslinking, and good water retention. Additionally, they could be stored for 14 d at 4 °C. After post-processing, the AMP gel had a favorable AMP release rate and good sustained release effect in gastrointestinal digestion, which conformed to the Ritger-Peppas equation model. The results revealed that the gel system had good printability and applicability for 3D printing; as well, 3DFP products had good storage properties. These conclusions provide a theoretical basis for the application of 3D printing using fruit pulp as a raw material.

2.
Foods ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36140963

ABSTRACT

In this study, pH-sensitive bilayer hydrogel films with different AM contents (0.00%, 0.50%, 1.00%, 1.50%, 2.00% and 2.50%) were constructed. The films took AM/GG hydrogel as the inner layer structure and a pea protein (PP)/chitosan (CS) composite system as the outer structure. Film formation and the effect of AM were clarified through the detection and analysis of mechanical properties, microstructure, pH sensitivity and fresh-keeping ability. Results showed that AM exhibited good compatibility with each substance in the composite film, which were evenly dispersed in the system. The addition of AM significantly improved the water content, tensile strength, elongation at break, puncture resistance, oil resistance and water resistance of the composite films. The antioxidant activity, pH sensitivity and fresh-keeping effect of the composite film on fresh pork were remarkably enhanced. Moreover, it was found that the composite film containing AM effectively inhibited the production of total volatile base nitrogen (TVN) in fresh pork and significantly reduced the weight loss of fresh pork due to water loss during storage. Therefore, the functional properties revealed that AM was more positive to the comprehensive performance of films, and the AM-GG/PP-CS bilayer film containing AM exhibited strong potential for use in food preservation and packaging as a food freshness indicator to test food quality changes in storage.

3.
J Food Sci ; 86(4): 1273-1282, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33761135

ABSTRACT

This study was designed to investigate the effects of ultrafine grinding on the physicochemical properties of pea dietary fiber (PDF) and the hypoglycemic effect of ultrafine grinding dietary fiber on diabetes mellitus (DM). So, the PDF was treated by ultrafine grinding technology, and its microstructure and physicochemical properties were determined. Then, the DM model was established, and the 4-week ultrafine grinded pea dietary fiber (UGPDF) diet intervention was conducted by using gavage and feeding. During this period, the blood glucose and body weight of the mice were measured, and an oral glucose tolerance test was measured on the last day. The biochemical blood indexes of the mice were determined, and the pancreas was stained with HE after dissecting. The results showed that after ultrafine grinding, the structure fragmentation, specific surface area increased, and UGPDF showed higher swelling ability as well as water and oil holding capacities. Simultaneously, UGPDF had a significant effect on reducing blood glucose and glycosylated hemoglobin in DM mice, improving the wasting state of mice and increasing the tolerance to glucose. Further, the results of the HE section showed that the pancreatic islet cells gradually returned to normal regular morphology. In biochemical blood indicators, UGPDF reduced TC and TG levels in the blood. This study provided a specific data basis for the following research on the hypoglycemic mechanism, and broadens the application field of PDF. PRACTICAL APPLICATION: The physicochemical properties of pea dietary fiber were improved by ultrafine grinding technology. Because of this, the application of pea dietary fiber in the field of hypoglycemic had a better effect, laying a foundation for the next research on hypoglycemic mechanism.


Subject(s)
Diabetes Mellitus/diet therapy , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Food Handling/methods , Hypoglycemic Agents/administration & dosage , Pisum sativum/chemistry , Animals , Blood Glucose/analysis , Chemical Phenomena , Glucose Tolerance Test , Male , Mice , Plant Extracts/administration & dosage , Plant Extracts/chemistry
4.
J Cosmet Dermatol ; 20(8): 2648-2656, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33480158

ABSTRACT

BACKGROUND: In daily life, excessive exposure to ultraviolet light can lead to pigmentation. AIMS: This study is to determine the mechanism of persimmon tannin extract in inhibiting pigmentation, to investigate whether the effect of persimmon tannin extract is superior to that of arbutin, and to detect the optimal concentration. METHODS: In this study, the guinea pig pigmentation model was established by ultraviolet B (UVB) irradiation. With arbutin as a positive control, Masson-Fontana silver staining was used to observe the effects of persimmon tannin extract on melanin distribution in guinea pigs' skin tissue. Then, the tyrosinase activity was measured, and an Enzyme-linked immunosorbent assay was used to investigate the contents of antioxidant enzymes, inflammatory factors, and signaling pathway inhibitors in guinea pigs' skin tissue. RESULTS: The results showed that compared with the model group, superoxide dismutase, catalase, glutathione peroxidase, DKK1 content of Wnt/-catenin signaling pathway inhibitors levels, and inhibitory tyrosinase activity were increased by 24.3%, 33.3%, 59.3%, 36.81%, and 17.16%, respectively. Meanwhile, the interleukin-6 and interleukin-8 expression were reduced by approximately 22.2% and 54%. The results also showed that persimmon tannin extract could significantly reduce melanin density. The differences in experimental results were statistically significant (P < .01). CONCLUSIONS: Compared with the arbutin group, the medium-dose group (persimmon tannin extract of 20%) had a more significant effect on inhibiting pigmentation. Persimmon tannin could serve as a promising agent for preventing skin pigmentation. It is expected to provide ideas for the development of deep-processed persimmon products related to functional foods and cosmetics.


Subject(s)
Diospyros , Tannins , Animals , Guinea Pigs , Melanins , Plant Extracts/pharmacology , Skin , Skin Pigmentation , Tannins/pharmacology , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL