Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.173
Filter
1.
Sci Rep ; 14(1): 15562, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971863

ABSTRACT

Systolic blood pressure variability (SBPV) is associated with outcome in acute ischemic stroke. Remote ischemic conditioning (RIC) has been demonstrated to be effective in stroke and may affect blood pressure. Relationship between SBPV and RIC treatment after stroke warrants investigation. A total of 1707 patients from per-protocol analysis set of RICAMIS study were included. The SBPV was calculated based on blood pressure measured at admission, Day 7, and Day 12. (I) To investigate the effect of SBPV on efficacy of RIC in stroke, patients were divided into High and Low categories in each SBPV parameter. Primary outcome was excellent functional outcome at 90 days. Compared with Control, efficacy of RIC in each category and interaction between categories were investigated. (II) To investigate the effect of RIC treatment on SBPV, SBPV parameters were compared between RIC and Control groups. Compared with Control, a higher likelihood of primary outcome in RIC was found in high category (max-min: adjusted risk difference [RD] = 7.2, 95% CI 1.2-13.1, P = 0.02; standard deviation: adjusted RD = 11.5, 95% CI 1.6-21.4, P = 0.02; coefficient of variation: adjusted RD = 11.2, 95% CI 1.4-21.0, P = 0.03). Significant interaction of RIC on outcomes were found between High and Low standard deviations (adjusted P < 0.05). No significant difference in SBPV parameters were found between treatment groups. This is the first report that Chinese patients with acute moderate ischemic stroke and presenting with higher SBPV, who were non-cardioemoblic stroke and not candidates for intravenous thrombolysis or endovascular therapy, would benefit more from RIC with respect to functional outcomes at 90 days, but 2-week RIC treatment has no effect on SBPV during hospital.


Subject(s)
Blood Pressure , Ischemic Preconditioning , Ischemic Stroke , Humans , Male , Female , Blood Pressure/physiology , Aged , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Middle Aged , Ischemic Preconditioning/methods , Treatment Outcome , Systole/physiology
2.
Anticancer Res ; 44(7): 2793-2803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925821

ABSTRACT

BACKGROUND/AIM: The aim of this study was to develop an enhanced intestinal toxicity assay with three outputs assessing proliferation, villi morphology and DNA damage after irradiation. MATERIALS AND METHODS: Whole 5 cm jejunal lengths were collected from mice following total body x-ray irradiation (0-15 Gy) at 0-84 h. Tissues were wrapped into swirls for cryopreservation and immunohistochemically stained for EdU, CD31, and γH2AX. A semi-automated image analysis was developed for the proliferation, villi morphology, and DNA damage models. RESULTS: Proliferation assessed via EdU staining varied with cycles of damage repair, hyperproliferation, and homeostasis after radiation, with the time to onset of each cycle variable based on radiation dose. An analysis model evaluating the amount of proliferation per unit length of jejunum analyzed was developed, with a dose-response curve identified at 48 h post treatment. The villi length model measured the length of intact and healthy CD31-stained capillary beds between the crypts and villi tips at 3.5 days post treatment within a 0-10 Gy dose range. The DNA damage model evaluated the intensity of γH2AX staining within cellular nuclei, with a useful dose-response identified at 1 h post-radiation treatment. CONCLUSION: This assay demonstrates flexibility for assessing radiation-induced damage, with analysis of proliferation, villi length, or direct DNA damage achievable at defined time points and within useful radiation dose curves. The software-assisted image analysis allows for rapid, comprehensive, and objective data generation with an assay turnover time of days instead of weeks on samples that are representative of most of the treated jejunum.


Subject(s)
Cell Proliferation , DNA Damage , Animals , Mice , Cell Proliferation/radiation effects , DNA Damage/radiation effects , Jejunum/radiation effects , Jejunum/pathology , Radiation Tolerance , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology , Intestines/radiation effects , Intestines/pathology , Whole-Body Irradiation/adverse effects , Dose-Response Relationship, Radiation , Histones/metabolism , Male , Mice, Inbred C57BL
3.
Environ Sci Technol ; 58(24): 10458-10469, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836430

ABSTRACT

Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Particulate Matter , Fatty Liver/chemically induced , Humans , China , Air Pollutants
4.
Article in English | MEDLINE | ID: mdl-38831636

ABSTRACT

OBJECTIVE: We performed a post hoc exploratory analysis of Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke (RICAMIS) to determine whether hypertension history and baseline systolic blood pressure (SBP) affect the efficacy of remote ischemic conditioning (RIC). METHODS: Based on the full analysis set of RICAMIS, patients were divided into hypertension versus non-hypertension group, or <140 mmHg versus ≥140 mmHg group. Each group was further subdivided into RIC and control subgroups. The primary outcome was modified Rankin Scale (mRS) 0-1 at 90 days. Efficacy of RIC was compared among patients with hypertension versus nonhypertension history and SBP of <140 mmHg versus ≥140 mmHg. Furthermore, the interaction effect of treatment with hypertension and SBP was assessed. RESULTS: Compared with control group, RIC produced a significantly higher proportion of patients with excellent functional outcome in the nonhypertension group (RIC vs. control: 65.7% vs. 57.0%, OR 1.45, 95% CI 1.06-1.98; p = 0.02), but no significant difference was observed in the hypertension group (RIC vs. control: 69.1% vs. 65.2%, p = 0.17). Similar results were observed in SBP ≥140 mmHg group (RIC vs. control: 68.0% vs. 61.2%, p = 0.009) and SBP <140 mmHg group (RIC vs. control: 65.6% vs. 64.7%, p = 0.77). No interaction effect of RIC on primary outcome was identified. INTERPRETATION: Hypertension and baseline SBP did not affect the neuroprotective effect of RIC, but they were associated with higher probability of excellent functional outcome in patients with acute moderate ischemic stroke who received RIC treatment.

6.
Org Lett ; 26(24): 5074-5081, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38857312

ABSTRACT

The nickel/photoredox dual catalysis system is an efficient conversion platform for the difunctionalization of unsaturated hydrocarbons. Herein, we disclose the first dual nickel/photoredox-catalyzed intramolecular 1,2-arylsulfonylation of allenes, which can accurately construct a C(sp2)-C(sp2) bond and a C(sp3)-S bond. The reaction exhibits excellent chemoselectivity and regioselectivity, allowing modular conformations of a diverse series of 3-sulfonylmethylbenzofuran derivatives. Control experiments showed that the bipyridine ligand is crucial for the formation of a stable σ-alkyl nickel intermediate, providing the possibility for sulfonyl radical insertion. Meanwhile, the electrophilic sulfonyl radical facilitates further oxidative addition of the σ-alkyl nickel intermediate and inhibits addition with allenes. In addition, control experiments, cyclic voltammetry tests, Stern-Volmer experiments, and density functional theory calculations afford evidence for the Ni(0)/Ni(I)/Ni(II)/Ni(III) pathway in this 1,2-arylsulfonylation.

7.
J Hazard Mater ; 476: 135004, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943883

ABSTRACT

Exposure to fine particulate matter (PM2.5) is a significant risk factor for hepatic steatosis. The N6-methyladenosine (m6A) is implicated in metabolic disturbances triggered by exogenous environmental factors. However, the role of m6A in mediating PM2.5-induced hepatic steatosis remains unclear. Herein, male C57BL/6J mice were subjected to PM2.5 exposure throughout the entire heating season utilizing a real-ambient PM2.5 whole-body inhalation exposure system. Concurrently, HepG2 cell models exposed to PM2.5 were developed to delve the role of m6A methylation modification. Following PM2.5 exposure, significant hepatic lipid accumulation and elevated global m6A level were observed both in vitro and in vivo. The downregulation of YTHDC2, an m6A-binding protein, might contribute to this alteration. In vitro studies revealed that lipid-related genes CEPT1 and YWHAH might be targeted by m6A modification. YTHDC2 could bind to CDS region of them and increase their stability. Exposure to PM2.5 shortened mRNA lifespan and suppressed the expression of CEPT1 and YWHAH, which were reversed to baseline or higher level upon the enforced expression of YTHDC2. Consequently, our findings indicate that PM2.5 induces elevated m6A methylation modification of CEPT1 and YWHAH by downregulating YTHDC2, which in turn mediates the decrease in the mRNA stabilization and expression of these genes, ultimately resulting in hepatic steatosis.

8.
Fitoterapia ; 177: 106049, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838827

ABSTRACT

Three undescribed seco-iridoid glycosides, one undescribed flavonoid glycoside, and three known glycosides were isolated and identified from Gentiana olivieri Griseb. The structures of these compounds were determined through spectroscopic analysis and ECD calculations. Olivierisecosides NP (1-3) were identified as aromatic conjugated seco-iridoid glucosides, among them olivierisecoside N was representing a particularly rare subtype known as the morroniside seco-iridoids. The compounds 2, 3, 5, and 6 exhibited significant inhibition of COX-2 expression, particularly compound 5 which demonstrated the most pronounced inhibitory activity with IC50 value of 23.33 ± 0.51 µM. This study provides evidence for the potential development and utilization of G. olivieri as a source of anti-inflammatory components.

9.
Food Chem ; 455: 139913, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824731

ABSTRACT

This study investigates the effectiveness of microwave-assisted hot air drying (MAHD) on corn drying process, water migration, dielectric properties, microstructure, and quality attributes. The research compares MAHD with conventional hot air drying (HAD), employing various microwave powers (1.2-3.6 kW) and hot air temperatures (35-55 °C). The results demonstrate that MAHD significantly reduces the drying time (by 30.95-64.29%) compared to HAD. Two-term model accurately describes the drying kinetics of corn. Microwave facilitated the transformation and more uniform distribution of water within the corn, observed through LF-NMR/MRI. Additionally, MAHD was effective in preserving the color and carotenoids, while reducing fat acidity, indicating better quality retention. Microstructure analysis revealed that MAHD increases microporosity and cracks in corn, which correlates with the observed enhancement in drying efficiency. These findings underscore the potential of MAHD as a superior method for drying corn, offering benefits in terms of reduced drying time and improved quality preservation.


Subject(s)
Desiccation , Hot Temperature , Microwaves , Water , Zea mays , Zea mays/chemistry , Desiccation/methods , Desiccation/instrumentation , Water/chemistry , Kinetics , Food Handling/methods
10.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Article in English | MEDLINE | ID: mdl-38849323

ABSTRACT

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Subject(s)
Antineoplastic Agents , Membrane Proteins , Neoplasms , Patents as Topic , Humans , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immunity, Innate/drug effects , Immunotherapy/methods
11.
Redox Biol ; 73: 103179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733909

ABSTRACT

Increasing evidences demonstrate that environmental stressors are important inducers of acute kidney injury (AKI). This study aimed to investigate the impact of exposure to Cd, an environmental stressor, on renal cell ferroptosis. Transcriptomics analyses showed that arachidonic acid (ARA) metabolic pathway was disrupted in Cd-exposed mouse kidneys. Targeted metabolomics showed that renal oxidized ARA metabolites were increased in Cd-exposed mice. Renal 4-HNE, MDA, and ACSL4, were upregulated in Cd-exposed mouse kidneys. Consistent with animal experiments, the in vitro experiments showed that mitochondrial oxidized lipids were elevated in Cd-exposed HK-2 cells. Ultrastructure showed mitochondrial membrane rupture in Cd-exposed mouse kidneys. Mitochondrial cristae were accordingly reduced in Cd-exposed mouse kidneys. Mitochondrial SIRT3, an NAD+-dependent deacetylase that regulates mitochondrial protein stability, was reduced in Cd-exposed mouse kidneys. Subsequently, mitochondrial GPX4 acetylation was elevated and mitochondrial GPX4 protein was reduced in Cd-exposed mouse kidneys. Interestingly, Cd-induced mitochondrial GPX4 acetylation and renal cell ferroptosis were exacerbated in Sirt3-/- mice. Conversely, Cd-induced mitochondrial oxidized lipids were attenuated in nicotinamide mononucleotide (NMN)-pretreated HK-2 cells. Moreover, Cd-evoked mitochondrial GPX4 acetylation and renal cell ferroptosis were alleviated in NMN-pretreated mouse kidneys. These results suggest that mitochondrial GPX4 acetylation, probably caused by SIRT3 downregulation, is involved in Cd-evoked renal cell ferroptosis.


Subject(s)
Cadmium , Ferroptosis , Mitochondria , Phospholipid Hydroperoxide Glutathione Peroxidase , Sirtuin 3 , Animals , Ferroptosis/drug effects , Mice , Cadmium/toxicity , Cadmium/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Acetylation , Humans , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Cell Line , Male , Mice, Knockout , Coenzyme A Ligases
12.
Mol Pharm ; 21(7): 3623-3633, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38819959

ABSTRACT

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.


Subject(s)
Inflammation , Plaque, Atherosclerotic , Positron-Emission Tomography , Animals , Rabbits , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/metabolism , Inflammation/metabolism , Inflammation/diagnostic imaging , Positron-Emission Tomography/methods , Male , Macrophages/metabolism , Receptors, GABA/metabolism , Radiopharmaceuticals/pharmacokinetics , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Fluorine Radioisotopes , Positron Emission Tomography Computed Tomography/methods , Acetanilides
13.
Phytother Res ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761036

ABSTRACT

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

14.
Int J Ophthalmol ; 17(3): 408-419, 2024.
Article in English | MEDLINE | ID: mdl-38721504

ABSTRACT

AIM: To quantify the performance of artificial intelligence (AI) in detecting glaucoma with spectral-domain optical coherence tomography (SD-OCT) images. METHODS: Electronic databases including PubMed, Embase, Scopus, ScienceDirect, ProQuest and Cochrane Library were searched before May 31, 2023 which adopted AI for glaucoma detection with SD-OCT images. All pieces of the literature were screened and extracted by two investigators. Meta-analysis, Meta-regression, subgroup, and publication of bias were conducted by Stata16.0. The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool. RESULTS: Twenty studies and 51 models were selected for systematic review and Meta-analysis. The pooled sensitivity and specificity were 0.91 (95%CI: 0.86-0.94, I2=94.67%), 0.90 (95%CI: 0.87-0.92, I2=89.24%). The pooled positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 8.79 (95%CI: 6.93-11.15, I2=89.31%) and 0.11 (95%CI: 0.07-0.16, I2=95.25%). The pooled diagnostic odds ratio (DOR) and area under curve (AUC) were 83.58 (95%CI: 47.15-148.15, I2=100%) and 0.95 (95%CI: 0.93-0.97). There was no threshold effect (Spearman correlation coefficient=0.22, P>0.05). CONCLUSION: There is a high accuracy for the detection of glaucoma with AI with SD-OCT images. The application of AI-based algorithms allows together with "doctor+artificial intelligence" to improve the diagnosis of glaucoma.

15.
Int J Ophthalmol ; 17(3): 491-498, 2024.
Article in English | MEDLINE | ID: mdl-38721519

ABSTRACT

AIM: To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction (SMILE) with different myopic diopters. METHODS: Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study. Patients were allocated into three groups based on the preoperative spherical equivalent (SE): low myopia (SE≥-3.00 D), moderate myopia (-3.00 D>SE>-6.00 D) and high myopia (SE≤-6.00 D). Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times (1wk, 1, 3, 6mo, and 1y). Posterior mean elevation (PME) at 25 predetermined points of 3 concentric circles (2-, 4-, and 6-mm diameter) above the best fit sphere was analyzed. RESULTS: All surgeries were completed uneventfully and no ectasia was found through the observation. The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively (1mo: P=0.017; 3mo: P=0.018). The effect of time on ΔPME was statistically significant (2-mm ring: P=0.001; 4-mm ring: P<0.001; 6-mm ring: P<0.001). The effect of different corneal locations on ΔPME was significant except 1wk postoperatively (1mo: P=0.000; 3mo: P=0.000; 6mo: P=0.001; 1y: P=0.001). Posterior corneal stability was linearly correlated with SE, central corneal thickness, ablation depth, residual bed thickness, percent ablation depth and percent stromal bed thickness. CONCLUSION: The posterior corneal surface changes dynamically after SMILE. No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery. SMILE has good stability, accuracy, safety and predictability.

16.
Mol Cell Probes ; 76: 101964, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810840

ABSTRACT

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.

17.
Sci Rep ; 14(1): 11704, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778121

ABSTRACT

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Subject(s)
Artemisinins , Cell Proliferation , DNA Damage , ErbB Receptors , GTP Phosphohydrolases , Lung Neoplasms , Membrane Proteins , Signal Transduction , ErbB Receptors/metabolism , Humans , Cell Proliferation/drug effects , Artemisinins/pharmacology , DNA Damage/drug effects , Signal Transduction/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , GTP Phosphohydrolases/metabolism , Animals , Apoptosis/drug effects , Molecular Docking Simulation , A549 Cells , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Protein Binding
18.
Am J Emerg Med ; 81: 10-15, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626643

ABSTRACT

INTRODUCTION: Patients exhibiting signs of hyperactive delirium with severe agitation (HDSA) may require sedating medications for stabilization and safe transport to the hospital. Determining the patient's weight and calculating the correct weight-based dose may be challenging in an emergency. A fixed dose ketamine protocol is an alternative to the traditional weight-based administration, which may also reduce dosing errors. The objective of this study was to evaluate the frequency and characteristics of adverse events following pre-hospital ketamine administration for HDSA. METHODS: Emergency Medical Services (EMS) records from four agencies were searched for prehospital ketamine administration. Cases were included if a 250 mg dose of ketamine was administered on standing order to an adult patient for clinical signs consistent with HDSA. Protocols allowed for a second 250 mg dose of ketamine if the first dose was not effective. Both the 250 mg initial dose and the total prehospital dose were analyzed for weight based dosing and adverse events. RESULTS: Review of 132 cases revealed 60 cases that met inclusion criteria. Patients' median weight was 80 kg (range: 50-176 kg). No patients were intubated by EMS, one only requiring suction, three required respiratory support via bag valve mask (BVM). Six (10%) patients were intubated in the emergency department (ED) including the three (5%) supported by EMS via BVM, three (5%) others who were sedated further in the ED prior to requiring intubation. All six patients who were intubated were discharged from the hospital with a Cerebral Performance Category (CPC) 1 score. The weight-based dosing equivalent for the 250 mg initial dose (OR: 2.62, CI: 0.67-10.22) and the total prehospital dose, inclusive of the 12 patients that were administered a second dose, (OR: 0.74, CI: 0.27, 2.03), were not associated with the need for intubation. CONCLUSION: The 250 mg fixed dose of ketamine was not >5 mg/kg weight-based dose equivalent for all patients in this study. Although a second 250 mg dose of ketamine was permitted under standing orders, only 12 (20%) of the patients were administered a second dose, none experienced an adverse event. This indicates that the 250 mg initial dose was effective for 80% of the patients. Four patients with prehospital adverse events likely related to the administration of ketamine were found. One required suction, three (5%) requiring BVM respiratory support by EMS were subsequently intubated upon arrival in the ED. All 60 patients were discharged from the hospital alive. Further research is needed to determine an optimal single administration dose for ketamine in patients exhibiting signs of HDSA, if employing a standardized fixed dose medication protocol streamlines administration, and if the fixed dose medication reduces the occurrence of dosage errors.


Subject(s)
Delirium , Emergency Medical Services , Ketamine , Psychomotor Agitation , Humans , Ketamine/administration & dosage , Ketamine/therapeutic use , Delirium/drug therapy , Emergency Medical Services/methods , Male , Female , Middle Aged , Psychomotor Agitation/drug therapy , Aged , Adult , Retrospective Studies , Aged, 80 and over , Anesthetics, Dissociative/administration & dosage , Anesthetics, Dissociative/therapeutic use , Body Weight
19.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38589298

ABSTRACT

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

20.
iScience ; 27(4): 109469, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38577101

ABSTRACT

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...