Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 8(1): 75, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853182

ABSTRACT

BACKGROUND: To study the reproducibility of 23Na magnetic resonance imaging (MRI) measurements from breast tissue in healthy volunteers. METHODS: Using a dual-tuned bilateral 23Na/1H breast coil at 3-T MRI, high-resolution 23Na MRI three-dimensional cones sequences were used to quantify total sodium concentration (TSC) and fluid-attenuated sodium concentration (FASC). B1-corrected TSC and FASC maps were created. Two readers manually measured mean, minimum and maximum TSC and mean FASC values using two sampling methods: large regions of interest (LROIs) and small regions of interest (SROIs) encompassing fibroglandular tissue (FGT) and the highest signal area at the level of the nipple, respectively. The reproducibility of the measurements and correlations between density, age and FGT apparent diffusion coefficient (ADC) values were evaluatedss. RESULTS: Nine healthy volunteers were included. The inter-reader reproducibility of TSC and FASC using SROIs and LROIs was excellent (intraclass coefficient range 0.945-0.979, p < 0.001), except for the minimum TSC LROI measurements (p = 0.369). The mean/minimum LROI TSC and mean LROI FASC values were lower than the respective SROI values (p < 0.001); the maximum LROI TSC values were higher than the SROI TSC values (p = 0.009). TSC correlated inversely with age but not with FGT ADCs. The mean and maximum FGT TSC and FASC values were higher in dense breasts in comparison to non-dense breasts (p < 0.020). CONCLUSIONS: The chosen sampling method and the selected descriptive value affect the measured TSC and FASC values, although the inter-reader reproducibility of the measurements is in general excellent. RELEVANCE STATEMENT: 23Na MRI at 3 T allows the quantification of TSC and FASC sodium concentrations. The sodium measurements should be obtained consistently in a uniform manner. KEY POINTS: • 23Na MRI allows the quantification of total and fluid-attenuated sodium concentrations (TSC/FASC). • Sampling method (large/small region of interest) affects the TSC and FASC values. • Dense breasts have higher TSC and FASC values than non-dense breasts. • The inter-reader reproducibility of TSC and FASC measurements was, in general, excellent. • The results suggest the importance of stratifying the sodium measurements protocol.


Subject(s)
Breast , Magnetic Resonance Imaging , Sodium , Humans , Female , Reproducibility of Results , Adult , Magnetic Resonance Imaging/methods , Breast/diagnostic imaging , Middle Aged , Sodium Isotopes , Healthy Volunteers , Observer Variation , Young Adult
2.
Radiology ; 309(2): e231173, 2023 11.
Article in English | MEDLINE | ID: mdl-37987665

ABSTRACT

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Middle Aged , Early Detection of Cancer , Breast Neoplasms/diagnostic imaging , Retrospective Studies , Triage , Mammography , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...