Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36235952

ABSTRACT

The present study evaluates the use of thiolized chitosan conjugates (CS) in combination with two fundamental carbon nanoforms (carbon dots (CDs) and Hierarchical Porous Carbons (HPC)) for the preparation of intranasally (IN) administrated galantamine (GAL) nanoparticles (NPs). Initially, the modification of CS with L-cysteine (Cys) was performed, and the successful formation of a Cys-CS conjugates was verified via 1H-NMR, FTIR, and pXRD. The new Cys-CS conjugate showed a significant solubility enhancement in neutral and alkaline pH, improving CS's utility as a matrix-carrier for IN drug administration. In a further step, drug-loaded NPs were prepared via solid-oil-water double emulsification, and thoroughly analyzed by SEM, DLS, FTIR and pXRD. The results showed the formation of spherical NPs with a smooth surface, while the drug was amorphously dispersed within most of the prepared NPs, with the exemption of those systems contianing the CDs. Finally, in vitro dissolution release studies revealed that the prepared NPs could prolong GAL's release for up to 12 days. In sum, regarding the most promising system, the results of the present study clearly suggest that the preparation of NPs using both Cys-CS and CDs results in a more thermodynamically stable drug dispersion, while a zero-order release profile was achieved, which is essential to attain a stable in vivo pharmacokinetic behavior.

2.
Polymers (Basel) ; 13(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064952

ABSTRACT

In the present study, the preparation of controlled-released leflunomide (LFD)-loaded skin patches was evaluated, utilizing the combination of chitosan (CS) nanoparticles (NPs) incorporated into suitable poly(l-lactic acid) (PLLA) or poly(lactic-co-glycolic acid) (PLGA) polyester matrices. Initially, LFD-loaded CS NPs of ~600 nm and a smooth surface were prepared, while strong inter-molecular interactions between the drug and the CS were unraveled. In the following step, the prepared LFD-loaded CS NPs were incorporated into PLLA or PLGA, and thin-film patches were prepared via spin-coating. Analysis of the prepared films showed that the incorporation of the drug-loaded CS NPs resulted in a significant increase in the drug's release rate and extent as compared to neat LFD-loaded polyester patches (i.e., prepared without the use of CS NPs). In-depth analysis of the prepared formulations showed that the amorphization of the drug within the matrix and the increased wetting properties of the prepared CS NPs were responsible for the improved thin-film patch characteristics.

3.
Polymers (Basel) ; 13(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33800966

ABSTRACT

The aim of the present study was to prepare a leflunomide (LFD) sustained release transdermal delivery system for the treatment of psoriasis. In this context, LFD-loaded nanoparticles (NPs) based on either neat chitosan (CS) or CS modified with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SDAEM, a sulfobetaine zwitterionic compound) were initially prepared via ionotropic gelation and characterized in terms of in vitro dissolution, physicochemical, and antibacterial properties. Results showed that the use of the SDAEM-modified CS resulted in the formation of LFD-loaded NPs with improved wetting and solubilization properties, better in vitro dissolution profile characteristics (i.e., higher dissolution rate and extent), and improved (enhanced) antibacterial properties. The resultant LFD-loaded NPs were then embedded in suitable thin-film skin patches, prepared via spin-coating, utilizing two different biodegradable polyesters, namely methoxy polyethylene glycol-b-poly(L-lactide) (mPEG-b-PLA, at a ratio of 25/75 mPEG to PLA) and poly(lactic-co-glycolic acid) (PLGA at a ratio of 75/25 DL-lactide/glycolide copolymer). Results showed the formation of polymeric thin-films with no agglomeration (or trapped air) and uniform structure in all cases, while the LFD-loaded NPs were successfully embedded in the polymeric matrix. Analysis of the obtained in vitro dissolution profiles revealed a sustained release profile of the drug for up to approximately twelve days, while between the two proposed systems, the use of CS-SDAEM NPs (independently of the polyester type) was the most promising formulation approach.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322372

ABSTRACT

In the present work, the porous metal-organic framework (MOF) Basolite®F300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days). This PTX-Fe-BTC nanocomposite was further encapsulated into a mPEG-PCL matrix, a typical aliphatic amphiphilic copolyester synthesized in our lab, whose biocompatibility was validated by in vitro cytotoxicity tests toward human umbilical vein endothelial cells (HUVEC). Encapsulation was performed according to the solid-in-oil-in-water emulsion/solvent evaporation technique, resulting in nanoparticles of about 143 nm, slightly larger of those prepared without the pre-adsorption of PTX on Fe-BTC (138 nm, respectively). Transmission electron microscopy (TEM) imaging revealed that spherical nanoparticles with embedded PTX-loaded Fe-BTC nanoparticles were indeed fabricated, with sizes ranging from 80 to 150 nm. Regions of the composite Fe-BTC-PTX system in the infrared (IR) spectrum are identified as signatures of the drug-MOF interaction. The dissolution profiles of all nanoparticles showed an initial burst release, attributed to the drug amount located at the nanoparticles surface or close to it, followed by a steadily and controlled release. This is corroborated by computational analysis that reveals that PTX attaches effectively to Fe-BTC building blocks, but its relatively large size limits diffusion through crystalline regions of Fe-BTC. The dissolution behaviour can be described through a bimodal diffusivity model. The nanoparticles studied could serve as potential chemotherapeutic candidates for PTX delivery.

5.
Pharmaceutics ; 12(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143505

ABSTRACT

In the present study, poly(l-lactic acid) (PLLA) and poly(lactide-co-glycolide) (PLGA) hybrid nanoparticles were developed for intranasal delivery of galantamine, a drug used in severe to moderate cases of Alzheimer's disease. Galantamine (GAL) was adsorbed first in hierarchical porous carbon (HPC). Formulations were characterized by FT-IR, which showed hydrogen bond formation between GAL and HPC. Furthermore, GAL became amorphous after adsorption, as confirmed by XRD and differential scanning calorimetry (DSC) studies. GAL was quantified to be 21.5% w/w by TGA study. Adsorbed GAL was nanoencapsulated in PLLA and PLGA, and prepared nanoparticles were characterized by several techniques. Their sizes varied between 182 and 394 nm, with an exception that was observed in nanoparticles that were prepared by PLLA and adsorbed GAL that was found to be 1302 nm in size. DSC thermographs showed that GAL was present in its crystalline state in nanoparticles before its adsorption to HPC, while it remained in its amorphous phase after its adsorption in the prepared nanoparticles. It was found that the polymers controlled the release of GAL both when it was encapsulated alone and when it was adsorbed on HPC. Lastly, PLGA hybrid nanoparticles were intranasally-administered in healthy, adult, male Wistar rats. Administration led to successful delivery to the hippocampus, the brain area that is primarily and severely harmed in Alzheimer's disease, just a few hours after a single dose.

6.
Polymers (Basel) ; 9(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-30965902

ABSTRACT

The present study focused on the synthesis and application of novel isocyanate-modified carrageenan polymers as sorbent materials for pre-concentration and removal of diclofenac (DCF) and carbamazepine (CBZ) in different aqueous matrices (surface waters and wastewaters). The polymer materials were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The effects on the adsorption behavior were studied, and the equilibrium data were fitted by the Langmuir and Freundlich models. The maximum adsorption capacity (Qmax) was determined by Langmuir⁻Freundlich model and was ranged for iota-carrageenan (iCAR) from 7.44 to 8.51 mg/g for CBZ and 23.41 to 35.78 mg/g for DCF and for kappa-carrageenan (kCAR) from 7.07 to 13.78 mg/g for CBZ and 22.66 to 49.29 mg/g for DCF. In the next step, dispersive solid phase extraction (D-SPE) methodology followed by liquid desorption and liquid chromatography mass spectrometry (LC/MS) has been developed and validated. The factors, which affect the performance of D-SPE, were investigated. Then, the optimization of extraction time, sorbent mass and eluent's volume was carried out using a central composite design (CCD) and response surface methodology (RSM). Under the optimized conditions, good linear relationships have been achieved with the correlation coefficient (R²) varying from 0.9901 to 0.995. The limits of detections (LODs) and limits of quantifications (LOQs) ranged 0.042⁻0.090 µg/L and 0.137⁻0.298 µg/L, respectively. The results of the recoveries were 70⁻108% for both analytes, while the precisions were 2.8⁻17.5% were obtained, which indicated that the method was suitable for the analysis of both compounds in aqueous matrices.

7.
Int J Pharm ; 509(1-2): 208-218, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27235556

ABSTRACT

Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(ε-caprolactone) with d-α-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37°C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.


Subject(s)
Antineoplastic Agents/chemistry , Caproates/chemistry , Coated Materials, Biocompatible/chemistry , Drug Carriers/chemistry , Lactones/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Zirconium/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Humans , Hydrophobic and Hydrophilic Interactions , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Particle Size , Polyethylene Glycols/chemistry , Vitamin E/chemistry
8.
Sci Total Environ ; 537: 411-20, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282775

ABSTRACT

The aim of the present study is the evaluation of graphene oxide (GhO) as adsorbent material for the removal of beta-blockers (pharmaceutical compounds) in aqueous solutions. The composition and morphology of prepared materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Atenolol (ATL) and propranolol (PRO) were used as model drug molecules and their behavior were investigated in terms of GhO dosage, contact time, temperature and pH. Adsorption mechanisms were proposed and the pH-effect curves after adsorption were discussed. The kinetic behavior of GhO-drugs system was analyzed after fitting to pseudo-first and -second order equations. The adsorption equilibrium data were fitted to Langmuir, Freundlich and Langmuir-Freundlich model calculating the maximum adsorption capacity (67 and 116 mg/g for PRO and ATL (25 °C), respectively). The temperature effect on adsorption was tested carrying out the equilibrium adsorption experiments at three different temperatures (25, 45, 65 °C). Then, the thermodynamic parameters of enthalpy, free energy and entropy were calculated. Finally, the desorption of drugs from GhO was evaluated by using both aqueous eluants (pH2-10) and organic solvents.


Subject(s)
Adrenergic beta-Antagonists/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Kinetics , Microscopy, Electron, Scanning , Thermodynamics
9.
Anal Chim Acta ; 866: 27-40, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25732690

ABSTRACT

In the present study, two novel molecularly imprinted polymers (MIPs) with remarkable recognition properties for metformin and its transformation product, guanylurea, have been prepared for their selective, enrichment, isolation and removal from aqueous media. The prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and swelling experiments. The performance of the prepared MIPs was evaluated by various parameters including the influence of pH, contact time, temperature and initial compound concentration. The effects on the adsorption behavior of the removal process parameters were studied and the equilibrium data were fitted by the Langmuir and Freundlich models. Due to the imprinting effect, adsorption performance of MIPs was always superior to its corresponding NIP (non-imprinted polymer), with maximum adsorption capacity ∼80 mg g(-1) for both MIPs. Stability and reusability of the MIPs up to the 5th cycle meant that they could be applied repeatedly without losing substantial removal ability. In the next step, the prepared MIP nanoparticles were evaluated as sorbents in a dispersive solid phase extraction (D-SPE) configuration for selective enrichment and determination of metformin and guanylurea in different aqueous matrices. Under the working extraction conditions, the D-SPE method showed good linearity in the range of 50-1000 ng L(-1), repeatability of the extractions (RSD 2.1-5.1%, n=3), and low limits of detection (1.5-3.4 ng L(-1)). The expanded uncertainty of the data obtained was estimated following a bottom-up approach. The proposed method combined the advantages of MIPs and D-SPE, and it could become an alternative tool for analyzing the residues of METF and its transformation product GUA in complex water matrices, such as wastewaters.


Subject(s)
Hypoglycemic Agents/isolation & purification , Metformin/isolation & purification , Molecular Imprinting , Solid Phase Extraction , Urea/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Metformin/chemistry , Metformin/metabolism , Nanoparticles/chemistry , Polymers/chemistry , Temperature , Thermodynamics , Urea/analogs & derivatives , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
10.
Colloids Surf B Biointerfaces ; 127: 256-65, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25687096

ABSTRACT

In the present study, carrageenan microparticles were synthesized using spray-drying method and used as biosorbents for the removal of pharmaceutical compounds. The cross-linking reaction of iota-carrageenan (iCAR) and kappa-carrageenan (kCAR) with glutaraldehyde (GLA) at different concentrations (2.5% or 5% (w/w), mass of GLA per mass of CAR) was studied (iCAR/GLA2.5, iCAR/GLA5, kCAR/GLA2.5, kCAR/GLA5). The physicochemical properties of the novel cross-linked polymers were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Swelling studies were in accordance with the polymer properties, showing the lowest swelling degree (19%) by using the iCAR/GLA5 microparticles. The optimal kCAR/GLA5 microparticles were successfully employed for the removal of Metoprolol (MTPL) from aqueous samples. The adsorption capacity of the adsorbents was investigated using a batch adsorption procedure and the kinetics and thermodynamics of the adsorption process were further investigated. It was found that the adsorption isotherms agree well with the Langmuir-Freundlich model. The maximum adsorption capacity (Qm) was achieved in pH 6, whereas an increase of Qm was observed increasing the temperature (from 109 at 20°C to 178 mg/g at 40°C). Kinetic studies showed that the adsorption process on iCAR/GLA5 microparticles followed pseudo-second-order rate mechanism. Finally, a new phenomenological model of the adsorption process was proposed in order to extract information on the relevant sub-processes.


Subject(s)
Carrageenan/chemical synthesis , Microspheres , Pharmaceutical Preparations/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Biopolymers/chemistry , Carrageenan/chemistry , Glutaral/chemistry , Hydrogen-Ion Concentration , Kinetics , Metoprolol/isolation & purification , Solutions , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors , X-Ray Diffraction
11.
Int J Nanomedicine ; 6: 2981-95, 2011.
Article in English | MEDLINE | ID: mdl-22162656

ABSTRACT

Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.


Subject(s)
Adipates/chemistry , Biocompatible Materials/chemical synthesis , Nanocapsules/chemistry , Polyesters/chemistry , Polypropylenes/chemistry , Adipates/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Deferoxamine/chemistry , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Particle Size , Polyesters/pharmacology , Polypropylenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...