Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25784603

ABSTRACT

Adjunct α2-adrenoceptor antagonism is a potential strategy to accelerate the behavioral effects of antidepressants. Co-administration of the α2-adrenoceptor antagonist yohimbine hastens the behavioral and neurogenic effects of the antidepressant imipramine. We examined the transcriptional targets of short duration (7days), combination treatment of yohimbine and imipramine (Y+I) within the adult rat hippocampus. Using microarray and qPCR analysis we observed functional enrichment of genes involved in intracellular signaling cascades, plasma membrane, cellular metal ion homeostasis, multicellular stress responses and neuropeptide signaling pathways in the Y+I transcriptome. We noted reduced expression of the α2A-adrenoceptor (Adra2a), serotonin 5HT2C receptor (Htr2c) and the somatostatin receptor 1 (Sstr1), which modulate antidepressant action. Further, we noted a regulation of signaling pathway genes like inositol monophosphatase 2 (Impa2), iodothyronine deiodinase 3 (Dio3), regulator of G-protein signaling 4 (Rgs4), alkaline ceramidase 2 (Acer2), doublecortin-like kinase 2 (Dclk2), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (Nfkbia) and serum/glucocorticoid-regulated kinase 1 (Sgk1), several of which are implicated in the pathophysiology of mood disorders. Comparative analysis revealed an overlap in the hippocampal regulation of Acer2, Nfkbia, Sgk1 and Impa2 between Y+I treatment, the fast-acting electroconvulsive seizure (ECS) paradigm, and the slow-onset chronic (21days) imipramine treatment. Further, Y+I treatment enhanced the quiescent neural progenitor pool in the hippocampal neurogenic niche similar to ECS, and distinct from chronic imipramine treatment. Taken together, our results provide insight into the molecular and cellular targets of short duration Y+I treatment, and identify potential leads for the development of rapid-action antidepressants.


Subject(s)
Anticonvulsants/pharmacology , Gene Expression Regulation/drug effects , Hippocampus , Imipramine/pharmacology , Neurogenesis/drug effects , Yohimbine/pharmacology , Animals , Cell Count , Doublecortin Protein , Drug Combinations , Electroshock/methods , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Nestin/genetics , Nestin/metabolism , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Signal Transduction/drug effects
2.
Brain Behav Immun ; 42: 123-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24953429

ABSTRACT

Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.


Subject(s)
Anxiety/etiology , Behavior, Animal/physiology , Brain/pathology , Malaria/complications , Microglia/pathology , Neurogenesis/physiology , Social Behavior , Animals , Anxiety/pathology , Anxiety/physiopathology , Brain/physiopathology , Hippocampus/pathology , Hippocampus/physiopathology , Inflammation/etiology , Inflammation/pathology , Inflammation/physiopathology , Malaria/pathology , Malaria/physiopathology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...