Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 21(1): 1154, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711195

ABSTRACT

Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi's. Finally, standard of care treatment and synthetic lethality will be reviewed.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Homologous Recombination/physiology , Ovarian Neoplasms/genetics , Recombinational DNA Repair/physiology , Breast Neoplasms/drug therapy , Female , Genetic Variation , Humans , Mutation , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/physiology
2.
Future Oncol ; 17(13): 1683-1694, 2021 May.
Article in English | MEDLINE | ID: mdl-33726502

ABSTRACT

Radiation therapy (RT) in some cases results in a systemic anticancer response known as the abscopal effect. Multiple hypotheses support the role of immune activation initiated by RT-induced DNA damage. Optimal radiation dose is necessary to promote the cGAS-STING pathway in response to radiation and initiate an IFN-1 signaling cascade that promotes the maturation and migration of dendritic cells to facilitate antigen presentation and stimulation of cytotoxic T cells. T cells then exert a targeted response throughout the body at areas not subjected to RT. These effects are further augmented through the use of immunotherapeutic drugs resulting in increased T-cell activity. Tumor-infiltrating lymphocyte presence and TREX1, KPNA2 and p53 signal expression are being explored as prognostic biomarkers.


Subject(s)
Chemoradiotherapy/methods , Dendritic Cells/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/radiotherapy , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cell Movement/radiation effects , Clinical Trials as Topic , DNA Damage/immunology , DNA Damage/radiation effects , Dendritic Cells/radiation effects , Exodeoxyribonucleases/analysis , Exodeoxyribonucleases/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/radiation effects , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/mortality , Phosphoproteins/analysis , Phosphoproteins/metabolism , Prognosis , Progression-Free Survival , Radiotherapy Dosage , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/radiation effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Tumor Suppressor Protein p53/analysis , Tumor Suppressor Protein p53/metabolism , alpha Karyopherins/analysis , alpha Karyopherins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...