Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 10(12): 5564-5576, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37872787

ABSTRACT

We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.

2.
J Chem Theory Comput ; 18(3): 1821-1837, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35192350

ABSTRACT

The analysis of chemical bonding in crystal structures and surfaces is an important research topic in theoretical chemistry. In this work, we present a PyMOL plugin, named LModeA-nano, as implementation of the local vibrational mode theory for periodic systems (Tao et al. J. Chem. Theory Comput. 2019, 15, 1761) assessing bond strength in terms of local stretching force constants in extended systems of one, two, and three dimensions. LModeA-nano can also analyze chemical bonds in isolated molecular systems thus enabling a head-to-head comparison of bond strength across systems with different dimensions in periodicity (0-3D). The new code is interfaced to the output generated by various solid-state modeling packages including VASP, CP2K, Quantum ESPRESSO, CASTEP, and CRYSTAL. LModeA-nano is cross-platform, open-source and freely available on GitHub: https://github.com/smutao/LModeA-nano.

3.
Phys Chem Chem Phys ; 24(6): 3722-3732, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35080568

ABSTRACT

Previous microwave studies of naphthol monomers were supplemented by measuring spectra of all 13C mono-substituted isotopologues of the cis- and trans-conformers of 1-naphthol and 2-naphthol in their natural abundances. The resulting data were utilized to determine substitution structures and so-called semi-experimental effective structures. Results from electronic structure calculations show that the OH group of cis-1-naphthol points ≈6° out of plane, which is consistent with the inertial defect data of cis- and trans-1-naphthol. The non-planarity of cis-1-naphthol is a result of a close-contact H-atom-H-atom interaction. This type of H-H interaction has been the subject of much controversy in the past and we provide here an in-depth theoretical analysis of it. The naphthol system is particularly well-suited for such analysis as it provides internal standards with its four different isomers. The methods used include quantum theory of atoms in molecules, non-covalent interactions, independent gradient model, local vibrational mode, charge model 5, and natural bond orbital analyses. We demonstrate that the close-contact H-H interaction is neither a purely attractive nor repulsive interaction, but rather a mixture of the two.


Subject(s)
Naphthols , Quantum Theory , Isomerism
4.
J Chem Theory Comput ; 18(1): 562-579, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34928619

ABSTRACT

Local stretching force constants derived from periodic local vibrational modes at the vdW-DF2 density functional level have been employed to quantify the intrinsic hydrogen bond strength of 16 ice polymorphs, ices Ih, II, III, IV, V, VI, VII, VIII, IX, XI, XII, XIII, XIV, XV, XVII, and XIX, that are stable under ambient to elevated pressures. Based on this characterization on 1820 hydrogen bonds, relationships between local stretching force constants and structural parameters such as hydrogen bond length and angle were identified. Moreover, different bond strength distributions, from uniform to inhomogeneous, were observed for the 16 ices and could be explained in relation to different local structural elements within ices, that is, rings, that consist of different hydrogen bond types. In addition, criteria for the classification of hydrogen bonds as strong, intermediate, and weak were introduced. The latter was used to explore a different dimension of the water-ice phase diagram. These findings will provide important guidelines for assessing the credibility of new ice structures.

5.
Theor Chem Acc ; 140(3): 31, 2021.
Article in English | MEDLINE | ID: mdl-33716564

ABSTRACT

In this work, a simplified formulation of our recently developed generalized subsystem vibrational analysis (GSVA) for obtaining intrinsic fragmental vibrations (J Chem Theory Comput 14:2558, 2018) is presented. In contrast to the earlier implementation, which requires the explicit definition of a non-redundant set of internal coordinate parameters to be constructed for the subsystem, the new implementation circumvents this process by employing massless Eckart conditions to the subsystem fragment paired with a Gram-Schmidt orthogonalization to span the same internal vibration space indirectly. This revised version of GSVA (rev-GSVA) can be applied to equilibrium structure as well as transition state structure, and it has been incorporated into the open-source package UniMoVib (https://github.com/zorkzou/UniMoVib). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00214-021-02727-y.

6.
J Comput Chem ; 42(7): 516-521, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33368440

ABSTRACT

We evaluate the correlation between binding energy (BE) and electron density ρ(r) at the bond critical point for 28 neutral hydrogen bonds, recently reported by Emamian and co-workers (J. Comput. Chem., 2019, 40, 2868). As an efficient tool, we use local stretching force constant k HB a derived from the local vibrational mode theory of Konkoli and Cremer. We compare the physical nature of BE versus k HB a , and provide an important explanation for cases with significant deviation in the BE- k HB a relation as well as in the BE-ρ(r) correlation. We also show that care has to be taken when different hydrogen bond strength measures are compared. The BE is a cumulative hydrogen bond strength measure while k HB a is a local measure of hydrogen bond strength covering different aspects of bonding. A simplified and unified description of hydrogen bonding is not always possible and needs an in-depth understanding of the systems involved.

7.
J Phys Chem A ; 124(43): 8978-8993, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33064477

ABSTRACT

The unified reaction valley approach combined with the local vibrational mode and ring puckering analysis is applied to investigate the hydrogen evolution from water in the presence of small hydrides such as BH3, metal hydrides as AlH3, and their derivatives. We studied a series of reactions involving BH3, AlH3, B2H6, Al2H6, and AlH3BH3 with one- and two-water molecules, considering multiple reaction paths. In addition, the influence of the aqueous medium was examined. A general reaction mechanism was identified for most of the reactions. Those that deviate could be associated with unusually high reaction barriers with no hydrogen release. The charge transfer along the reaction path suggests that a viable hydrogen release is achieved when the catalyst adopts the role of a charge donor during the chemical processes. The puckering analysis showed that twistboat and boat forms are the predominant configurations in the case of an intermediate six-membered ring formation, which influences the activation barrier. The local mode analysis was used as a tool to detect the H-H bond formation as well as to probe catalyst regenerability. Based on the correlation between the activation energy and the change in the charge separation for cleaving O-H and B(Al)-H bonds, two promising subsets of reactions could be identified along with prescriptions for lowering the reaction barrier individually with electron-donating/withdrawing substituents.

8.
J Mol Model ; 26(10): 290, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32986131

ABSTRACT

Visualizing vibrational motions calculated with different ab initio packages requires dedicated post-processing tools. Here, we present a PyMOL plugin called PyVibMS for visualizing the vibrational motions for both molecular and solid systems calculated by mainstream quantum chemical computer programs including Gaussian, Q-Chem, VASP, and CRYSTAL. Benefiting from the continuing development of the PyMOL platform, PyVibMS provides powerful functionalities and user-friendly interface. PyVibMS was written in Python and its open-source nature makes it flexible and sustainable. As an example, the motions of the Konkoli-Cremer local vibrational modes are shown in this work for the first time. PyVibMS is freely available at https://github.com/smutao/PyVibMS . Graphical abstract In this work, a PyMOL plugin named PyVibMS is developed to visualize molecular and lattice vibrations.

9.
Molecules ; 25(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235623

ABSTRACT

Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1-0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger's rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ -hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n → σ ∗ (X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials.


Subject(s)
Halogens/chemistry , Models, Chemical
10.
Phys Chem Chem Phys ; 21(27): 15007-15018, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241084

ABSTRACT

Bond formation and bond cleavage processes are central to a chemical reaction. They can be investigated by monitoring changes in the potential energy surface (PES) or changes in the electron density (ED) distribution ρ(r) taking place during the reaction. However, it is not yet clear how the corresponding changes in the PES and ED are related, although the connection between energy and density has been postulated in the famous Hohenberg-Kohn theorem. Our unified reaction valley approach (URVA) identifies the locations of bond formation/cleavage events along the reaction path via the reaction path curvature peaks and their decomposition into the internal coordinate components associated with the bond to be formed or cleaved. One can also investigate bond formation/cleavage events using the quantum theory of atoms-in-molecule (QTAIM) analysis by monitoring changes in the topological properties of ρ(r) and the associated Laplacian ∇2ρ(r). By a systematic comparison of these two approaches for a series of ten representative chemical reactions ranging from hydrogen migration to cycloaddition reactions and gold(i) catalysis, we could for the first time unravel the PES-ED relationship. In the case of a bond formation, all changes in the ED occur shortly before or at the corresponding curvature peak, and in a bond cleavage, the ED changes occur at or shortly after the curvature peak. In any case, the ED changes always occurred in the vicinity of the curvature peak in accordance with the Hohenberg-Kohn theorem. Our findings provide a comprehensive view on bond formation/cleavage processes seen through the eyes of both the PES and ED and offer valuable guidelines on where to search for significant ED changes associated with bond formation or cleavage events.

SELECTION OF CITATIONS
SEARCH DETAIL
...