Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220290

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Subject(s)
Acyltransferases/genetics , Cell Adhesion Molecules/genetics , Cerebellar Diseases/genetics , Epilepsy/genetics , Genetic Variation/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Alleles , Female , Humans , Intellectual Disability/genetics , Male , Nervous System Malformations/genetics , Pedigree , Syndrome
2.
JAMA Pediatr ; 173(2): 134-139, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30500056

ABSTRACT

Importance: Acute flaccid myelitis (AFM) is an emerging poliolike illness of children whose clinical spectrum and associated pathogens are only partially described. The case definition is intentionally encompassing for epidemiologic surveillance to capture all potential AFM cases. Defining a restrictive, homogenous subpopulation may aid our understanding of this emerging disease. Objective: To evaluate the extent to which the US Centers for Disease Control and Prevention (CDC) case definition of AFM incorporates possible alternative diagnoses and to assess the plausibility of a case definition that enriches the biological homogeneity of AFM for inclusion in research studies. Design, Setting, and Participants: Retrospective case analysis of children younger than 18 years diagnosed as having AFM between 2012 and 2016 using the CDC case definition. Group 1 included patients recruited from the United States and Canada based on the CDC case definition of AFM. Group 2 included patients referred to the Johns Hopkins Transverse Myelitis Center for evaluation of suspected AFM. Patients' records and imaging data were critically reviewed by 3 neurologists to identify those cases with definable alternative diagnoses, and the remaining patients were categorized as having restrictively defined AFM (rAFM). Clinical characteristics were compared between patients with rAFM (cases) and those with alternative diagnoses, and a case description distinguishing these AFM groups was identified. Interrater reliability of this description was confirmed for a subset of cases by a fourth neurologist. Data were analyzed between May 2017 and November 2018. Main Outcomes and Measures: Proportion of patients with possible alternative diagnosis. Results: Of the 45 patients who met the CDC AFM case definition and were included, the mean age was 6.1 years; 27 were boys (60%); and 37 were white (82%), 3 were Asian (7%), 1 was Hispanic (2%), and 4 were mixed race/ethnicity (9%). Of the included patients, 34 were classified as having rAFM, and 11 had alternate diagnoses (including transverse myelitis, other demyelinating syndromes, spinal cord stroke, Guillain-Barre syndrome, Chiari I myelopathy, and meningitis). Factors differing between groups were primarily asymmetry of weakness, lower motor neuron signs, preceding viral syndrome, symptoms evolving over hours to days, absence of sensory deficits, and magnetic resonance imaging findings. A case description was able to reliably define the rAFM group. Conclusions and Relevance: We present an approach for defining a homogeneous research population that may more accurately reflect the pathogenesis of the prototypical poliomyelitis-like subgroup of AFM. The definition of rAFM forms a blueprint for inclusion criteria in future research efforts, but more work is required for refinement and external validation.


Subject(s)
Central Nervous System Viral Diseases/diagnosis , Myelitis/diagnosis , Neuromuscular Diseases/diagnosis , Acute Disease , Adolescent , Canada/epidemiology , Centers for Disease Control and Prevention, U.S. , Central Nervous System Viral Diseases/epidemiology , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Male , Myelitis/epidemiology , Neuromuscular Diseases/epidemiology , Reproducibility of Results , Retrospective Studies , United States/epidemiology
3.
Muscle Nerve ; 51(6): 793-810, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25678154

ABSTRACT

Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days after an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. Clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbances, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid ß-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle-cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. Muscle Nerve 51: 793-810, 2015.


Subject(s)
Rhabdomyolysis/diagnosis , Humans , Lactic Acid/blood , Muscles/pathology , Rhabdomyolysis/genetics , Rhabdomyolysis/therapy
4.
Curr Neurol Neurosci Rep ; 12(2): 165-74, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22392505

ABSTRACT

Congenital myopathy is a clinicopathological concept of characteristic histopathological findings on muscle biopsy in a patient with early-onset weakness. Three main categories are recognized within the classical congenital myopathies: nemaline myopathy, core myopathy, and centronuclear myopathy. Recent evidence of overlapping clinical and histological features between the classical forms and their different genetic entities suggests that there may be shared pathomechanisms between the congenital myopathies. Animal models, especially mouse and zebrafish, have been especially helpful in elucidating such pathomechanisms associated with the congenital myopathies and provide models in which future therapies can be investigated.


Subject(s)
Myasthenic Syndromes, Congenital/classification , Myasthenic Syndromes, Congenital/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Disease Models, Animal , Dynamin II/genetics , Humans , Mice , Muscle, Skeletal/pathology , Mutation/genetics , Myasthenic Syndromes, Congenital/pathology , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Tumor Suppressor Proteins/genetics
5.
Pediatr Neurol ; 36(4): 209-16, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17437902

ABSTRACT

Spinal cord infarction in children is a rare condition that is becoming more widely recognized. There are few reports in the pediatric literature characterizing etiology, diagnosis, treatment, and prognosis. The risk factors for pediatric ischemic spinal cord infarction include obstruction of blood flow associated with cardiovascular compromise or malformation, iatrogenic or traumatic vascular injury, cerebellar herniation, thrombotic or embolic disease, infection, and vasculitis. In many children, the cause of spinal cord ischemia in the absence of vertebral fracture is unknown. Imaging diagnosis of spinal cord ischemia is often difficult, due to the small transverse area of the cord, cerebrospinal fluid artifact, and inadequate resolution of magnetic resonance imaging. Physical therapy is the most important treatment option. The prognosis is dependent on the level of spinal cord damage, early identification and reversal of ischemia, and follow-up with intensive physical therapy and medical support. In addition to summarizing the literature regarding spinal cord infarction in children without vertebral fracture, this review article adds two cases to the literature that highlight the difficulties and controversies in the management of this condition.


Subject(s)
Infarction/pathology , Infarction/therapy , Magnetic Resonance Imaging , Physical Therapy Modalities , Spinal Cord/pathology , Adolescent , Female , Humans , Male , Spinal Fractures
SELECTION OF CITATIONS
SEARCH DETAIL
...