Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(2): 1072-1081, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174238

ABSTRACT

Utilization of efficient, stable and reusable catalysts for wastewater treatment and catalytic elimination of toxic pollutants is a challenge among researchers. This present work shows the synthesis of high-surface-activity Ag nanoparticle decorated gC3N4 modified MCM-41 and its efficiency towards catalytic hydrogenation of organic dye in the presence of reducing agent NaBH4. The proposed mechanism is based on the transfer of H+ and 2e- between the dye and the catalyst. Adsorption of dye stuff on the catalyst is a rate-determining step and is accelerated by the MCM-41 support which enhances the surface area. The catalytic efficiency and optimum time requirement were examined through the adsorption-desorption equilibrium, pseudo-first-order reaction kinetic model for the dye. The result obtained was 98% catalytic efficiency followed by the catalytic hydrogenation reaction.

2.
Environ Sci Pollut Res Int ; 31(4): 5540-5554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38127232

ABSTRACT

The performance of advanced materials in environmental applications using green energy is the tremendous interest among researchers. The visible light responsive BiFeO3 (BFO), BiFeO3/CuS (BFOC), and Ag-loaded BiFeO3/CuS (Ag-BFOC) heterostructures have been synthesized by reflux method followed by hydrothermal and wetness impregnation method. These synthesized composites are well characterized through X-ray diffraction, UV diffuse reflectance spectroscopy, scanning electron microscope, and Fourier transfer infrared spectroscopy techniques. Compared with BFO and BFOC, Ag-BFOC exhibits the highest photocatalytic performance towards the degradation of antibiotics ciprofloxacin (76%) within 120-min time and also showed better antibacterial performance towards gram-negative (Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii) bacteria. Moreover, the novelty of the present work is the addition of CuS on the surface of BiFeO3 from heterojunction type II and facilitates the electron-hole channelization at the interfaces between BiFeO3 and CuS. Again, the loading of Ag on BiFeO3/CuS helps in shifting the absorption band towards the red end, is eligible to absorb more sunlight due to surface plasmon resonance effect, improves the separation efficiency of photo-generated charge carriers, and enhances the photocatalytic degradation of ciprofloxacin. The antibacterial property of Ag gives a best result towards antimicrobial activity. The prepared composites have proved their durability and stability by four successive cycles and prove the versatility of the composite.


Subject(s)
Anti-Bacterial Agents , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/chemistry , Photolysis , Light , Ciprofloxacin/pharmacology
3.
RSC Adv ; 13(45): 31756-31771, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37908651

ABSTRACT

Present article represents the fabrication of plasmonic Ag/ZIF-8 composite and its effect on antibacterial, haemolytic and photocatalytic degradation of antibiotics. Ag/ZIF-8 was prepared by varying molar concentrations (1 mM, 2.5 mM, and 5 mM) of AgNO3 into ZIF-8 using NaBH4 as a reducing agent by the sol-gel process. The material was then characterised using the XRD, XPS, FTIR, SEM, HRTEM, UVDRS, BET and EIS techniques. When it comes to breaking down the antibiotic CIP, the optimised Ag2.5/ZIF-8 exhibits the strongest photocatalytic capability, with a degradation efficiency of 82.3% after 90 minutes. Due to LSPR (Localised Surface Plasmon Resonance) as well as the efficient movement and separation of the interfaces of photo-generated charge carriers in Ag2.5/ZIF-8 may be the causes of this increase in photocatalytic degradation. The effect of several parameters, such as pH, a variety of catalysts, varying dose concentrations, scavenging and sustainability are being investigated. The para benzoquinone (OH˙) and citric acid (h+) the primary active species in the photocatalytic breakdown pathway, according to trapping study. Whereas, Ag5/ZIF-8 was optimised for greater antibacterial activity against S. aureus and E. coli due to the synergistic impact of Ag+ and Zn2+ in Ag5/ZIF-8 and in haemolytic experiment, all samples were discovered to be non-toxic to blood cells. Overall, the synthesised compound was discovered to be a reusable, affordable catalyst for water remediation that can also be used in biomedicine.

4.
Dalton Trans ; 42(2): 558-66, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23090390

ABSTRACT

The present study reports the photo-Fenton degradation of phenolic compounds (phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol) in aqueous solution using mesoporous Cu/Al(2)O(3)-MCM-41 nanocomposite as a heterogeneous photo-Fenton-like catalyst. The in situ incorporation of mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (sol-gel method) forms Al(2)O(3)-MCM-41 and wetness impregnation of Cu(II) on Al(2)O(3)-MCM-41 generates mesoporous Cu/Al(2)O(3)-MCM-41 composite. The effects of pH and H(2)O(2) concentration on degradation of phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol are studied. Kinetics analysis shows that the photocatalytic degradation reaction follows a first-order rate equation. Mesoporous 5 Cu/Al(2)O(3)-MCM-41 is found to be an efficient photo-Fenton-like catalyst for the degradation of phenolic compounds. It shows nearly 100% degradation in 45 min at pH 4. The combined effect of small particle size, stabilization of Cu(2+) on the support Al(2)O(3)-MCM-41, ease reducibility of Cu(2+) and visible light activeness are the key factors for quick degradation of phenolic compounds by Cu/Al(2)O(3)-MCM-41.


Subject(s)
Aluminum Oxide/chemistry , Copper/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Light , Particle Size , Phenols/chemistry , Silicon Dioxide/chemistry , Green Chemistry Technology , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Photochemical Processes , Porosity , Surface Properties
5.
Dalton Trans ; 40(28): 7348-56, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21681290

ABSTRACT

Mesoporous Cu/Al(2)O(3)-MCM-41 composite was synthesized by two step processes; in situ incorporation of high surface area mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (in situ method) followed by impregnation of Cu(II) by incipient wetness method. The interesting thing is that starch was used for the first time as template for the preparation of high surface area MA. To evaluate the structural and electronic properties, these catalysts were characterized by low angle X-ray diffraction (LXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-vis DRS, FTIR and photoluminescent (PL) spectra. The various cationic dye such as methylene blue (MB), methyl violet (MV), malachite green (MG) and rhodamine 6G (Rd 6G) of high concentration 500 mg L(-1) were degraded and adsorbed very efficiently (100%) using the 5 Cu/Al(2)O(3)-MCM-41 composite within 30 and 60 min, respectively. The high and quick removal of such concerted cationic organic dyes and also mixed dyes (MB+MV+MG+Rd 6G) by means of photocatalysis/adsorption is basically due to the combined effect three characteristics of synthesized mesoporous 5 Cu/Al(2)O(3)-MCM-41 composite. These characteristics are intra-particle mesoporosity, electron transfer and ˙OH radical generation under solar light.


Subject(s)
Aluminum Compounds/chemistry , Coloring Agents/chemistry , Copper/chemistry , Electron Transport/physiology , Hydroxyl Radical/chemistry , Light , Silicon Dioxide/chemistry , Adsorption , Catalysis , Hydrogen-Ion Concentration , Photochemistry/methods , Photoelectron Spectroscopy , Porosity , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...