Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Oncol ; 7(6): 1822123, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33235918

ABSTRACT

KRAS-driven cancers acquire profound metabolic dependencies that are intimately linked to tumor growth. Our work revealed that colorectal cancers that harbor KRAS mutations are addicted to copper metabolism. This adaptation renders tumor cells critically dependent on the copper transporter ATP7A, which reveals copper metabolism as a promising therapeutic target for KRAS-driven colorectal cancers.

2.
Nat Commun ; 11(1): 3701, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709883

ABSTRACT

Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.


Subject(s)
Colorectal Neoplasms/metabolism , Copper/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Biological Availability , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Copper-Transporting ATPases/metabolism , Female , Humans , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Mice, Nude , Mice, SCID , Mutation
3.
Front Immunol ; 6: 355, 2015.
Article in English | MEDLINE | ID: mdl-26257729

ABSTRACT

Among numerous cytokines modulating natural killer (NK) cell function, interleukin 15 (IL-15) exerts a broad range of effect from development and homeostasis, to activation of mature NK cells during infection. Its significance is further highlighted by clinical trials in which IL-15 is being used to boost the proliferation and anti-tumor response of NK cells. Among the signal transduction pathways triggered by the engagement of IL-15 receptor with its ligand, the PI3K-AKT-mTOR pathway seems to be critical for the IL-15-mediated activation of NK cells, therefore being responsible for efficient anti-viral and anti-tumor responses. This review provides an overview of the role of IL-15 at multiple stages of NK cell life journey. Understanding the pathway by which IL-15 conveys critical signals for the generation of NK cells with efficient effector functions, in combination with established protocols for NK cell expansion ex vivo, will undoubtedly open new avenues for therapeutic applications for immunomodulation against infections and cancers.

4.
Translation (Austin) ; 3(1): e983402, 2015.
Article in English | MEDLINE | ID: mdl-26779414

ABSTRACT

The translation of mRNA into polypeptides is a key step in eukaryotic gene expression. Translation is mostly controlled at the level of initiation, which is partly regulated by the mammalian/mechanistic target of rapamycin (mTOR) signaling pathway. Whereas mTOR controls global protein synthesis through specific effector proteins, its role in the translation of select groups of mRNAs, such as those harboring a terminal oligopyrimidine (TOP) tract at their 5' end, remains more enigmatic. In this article, we describe the current knowledge on the role of mTOR in global mRNA translation, but also focus on the potential molecular mechanisms underlying the regulation of specific translational programs.

5.
Front Immunol ; 5: 187, 2014.
Article in English | MEDLINE | ID: mdl-24795729

ABSTRACT

Natural killer (NK) cells were so named for their uniqueness in killing certain tumor and virus-infected cells without prior sensitization. Their functions are modulated in vivo by several soluble immune mediators; interleukin-15 (IL-15) being the most potent among them in enabling NK cell homeostasis, maturation, and activation. During microbial infections, NK cells stimulated with IL-15 display enhanced cytokine responses. This priming effect has previously been shown with respect to increased IFN-γ production in NK cells upon IL-12 and IL-15/IL-2 co-stimulation. In this study, we explored if this effect of IL-15 priming can be extended to various other cytokines and observed enhanced NK cell responses to stimulation with IL-4, IL-21, IFN-α, and IL-2 in addition to IL-12. Notably, we also observed elevated IFN-γ production in primed NK cells upon stimulation through the Ly49H activation receptor. Currently, the fundamental processes required for priming and whether these signaling pathways work collaboratively or independently for NK cell functions are poorly understood. To identify the key signaling events for NK cell priming, we examined IL-15 effects on NK cells in which the pathways emanating from IL-15 receptor activation were blocked with specific inhibitors. Our results demonstrate that the PI3K-AKT-mTOR pathway is critical for cytokine responses in IL-15 primed NK cells. Furthermore, this pathway is also implicated in a broad range of IL-15-induced NK cell effector functions such as proliferation and cytotoxicity. Likewise, NK cells from mice treated with rapamycin to block the mTOR pathway displayed defects in proliferation, and IFN-γ and granzyme B productions resulting in elevated viral burdens upon murine cytomegalovirus infection. Taken together, our data demonstrate the requirement of PI3K-mTOR pathway for enhanced NK cell functions by IL-15, thereby coupling the metabolic sensor mTOR to NK cell anti-viral responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...