Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 15(12): 19119-19127, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34709042

ABSTRACT

Band structure engineering offers a perfect route to tune the transport properties of electrons and holes independently, especially in semiconductors for water splitting. Here, we explore the possibility of achieving a bias-free single-step solar to chemical energy conversion using gas-phase moisture as the reactant while generating hydrogen as the reaction product. A metal-based superhygroscopic hydrogel scavenges moisture from the ambient environment and serves as the water source. The FeOOH/BiVO4 heterojunction works as the photoanode wherein the interface allows the transport of electrons to the outer layer, resulting in an upward band bending. Concomitantly, the negative charges will accumulate on the Cu2O surface in the FeOOH/Cu2O photocathode, inducing a downward band bending. With the use of the hydrogel, photoanode, and photocathode, a device for directly splitting the moisture absorbed from the ambient air is realized, generating a photocurrent of 0.75 mA cm-2 under the one-sun intensity of cool daylight without any additional bias. The solar-cell-assisted device can split 6 mg of moisture in 10 h, and the hydrogel can absorb more than 30 mg of moisture in the same period.

2.
Adv Sci (Weinh) ; 8(6): 2003939, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747746

ABSTRACT

High levels of humidity can induce thermal discomfort and consequent health disorders. However, proper utilization of this astounding resource as a freshwater source can aid in alleviating water scarcity. Herein, a low-energy and highly efficient humidity control system is reported comprising of an in-house developed desiccant dehumidifier and hygrometer (sensor), with an autonomous operation capability that can realize simultaneous dehumidification and freshwater production. The high efficiency and energy saving mainly come from the deployed super hygroscopic complex (SHC), which exhibits high water uptake (4.64 g g-1) and facile regeneration. Machine-learning-assisted in-house developed low cost and high precision hygrometers enable the autonomous operation of the humidity management system. The dehumidifier can reduce the relative humidity (RH) of a confined room from 75% to 60% in 15 minutes with energy consumption of 0.05 kWh, saving more than 60% of energy compared with the commercial desiccant dehumidifiers, and harvest 10 L of atmospheric water in 24 h. Moreover, the reduction in RH from 80% to 60% at 32 °C results in the reduction of apparent temperature by about 7 °C, thus effectively improving the thermal comfort of the inhabitants.

3.
Nat Commun ; 12(1): 616, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33504813

ABSTRACT

Hybrid energy-harvesting systems that capture both wave and solar energy from the oceans using triboelectric nanogenerators and photovoltaic cells are promising renewable energy solutions. However, ubiquitous shadows cast from moving objects in these systems are undesirable as they degrade the performance of the photovoltaic cells. Here we report a shadow-tribo-effect nanogenerator that hybrids tribo-effect and shadow-effect together to overcome this issue. Several fiber-supercapacitors are integrated with the shadow-tribo-effect nanogenerator to form a self-charging power system. To capture and store wave/solar energy from oceans, an energy ball based on the self-charging power system is demonstrated. By harnessing the shadow-effect, i.e. the shadow of the moving object in the energy ball, the charging time shortens to 253.3 s to charge the fiber-supercapacitors to the same voltage (0.3 V) as using pure tribo-effect. This cost-effective method to harvest and store the wave/solar energy from the oceans in this work is expected to inspire next-generation large-scale blue energy harvesting.

4.
Biosens Bioelectron ; 165: 112423, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729541

ABSTRACT

Natural photosynthetic proteins can convert solar energy into electrical energy with close to 100% quantum efficiency, and there is increasing interest in their use for sustainable photoelectrochemical devices. The primary processes of photosynthesis remain operational and efficient down to extremely low temperatures, and natural photosystems exhibit a variety of self-healing mechanisms. Herein we demonstrate the use of an amphiphilic triblock copolymer, Pluronic F127, to fabricate a self-healing photosynthetic protein photoelectrochemical cell that operates optimally at sub-zero temperatures. A concentration of 30% (w/w) Pluronic F127 depressed the freezing point of an electrolyte comprising 50 mM ubiquinone-0 in aqueous buffer such that optimal device solar energy conversion was seen at -12 °C rather than at room temperature. Fabrication of the protein photoelectrochemical cells with flexible electrodes enabled the demonstration of self-healing of damage caused by repeated mechanical deformation. Multiple bending cycles caused a marked deterioration of the photocurrent response to around a third of initial levels due to damage to the gel phase of the electrolyte, but this could be restored to ~95% by simply cooling and rewarming the device. This self-recoverability of the electrolyte extended the operational life of the protein cell through a process that increased its photoelectrochemical output during the repair. Utility of the cells as components of a touch sensor operational across a wide temperature range, including freezing conditions, is demonstrated.


Subject(s)
Biosensing Techniques , Rhodobacter sphaeroides , Solar Energy , Photosynthesis , Sunlight
5.
Adv Mater ; 32(25): e2000971, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32363694

ABSTRACT

Unlike traditional water splitting in an aqueous medium, direct decomposition of atmospheric water is a promising way to simultaneously dehumidify the living space and generate power. Here, a tailored superhygroscopic hydrogel, a catalyst, and a solar cell are integrated into a humidity digester that can break down ambient moisture into hydrogen and oxygen, creating an efficient electrochemical cell. The function of the hydrogel is to harvest moisture from ambient humidity and transfer the collected water to the catalyst. Barium titanate and vertical 2D MoS2 nanosheets are integrated as the catalyst: the negatively polarized cathode can enhance the electron transport and attract H+ to the MoS2 surface for water reduction, while water oxidation takes place at the positively polarized anode. By employing this mechanism, it is possible to maintain the relative humidity in a medium-sized room at <60% without any additional energy input, and a stable current of 12.5 mA cm-2 is generated by the humidity digester when exposed to ambient light.

6.
Adv Sci (Weinh) ; 7(9): 1903478, 2020 May.
Article in English | MEDLINE | ID: mdl-32382483

ABSTRACT

The past few years have witnessed a rapid development of solar-driven interfacial evaporation, a promising technology for low-cost water desalination. As of today, solar-to-steam conversion efficiencies close to 100% or even beyond the limit are becoming increasingly achievable in virtue of unique photothermal materials and structures. Herein, the cutting-edge approaches are summarized, and their mechanisms for photothermal structure architecting are uncovered in order to achieve ultrahigh conversion efficiency. Design principles to enhance evaporation performance and currently available salt-rejection strategies for long-term desalination are systematically investigated. The guidelines to utilize every component in solar desalination systems for simultaneous in situ energy generation are also revealed. Finally, opportunities and challenges for future works in this field are also discussed and concluded.

7.
Small ; 16(14): e1906319, 2020 04.
Article in English | MEDLINE | ID: mdl-32182408

ABSTRACT

With rising global concerns over the alarming levels of particulate pollution, a sustainable air quality management is the need of the hour. Air filtration research has gained momentum in recent years. However, the research perspective is still blinkered toward formulating new fiber systems for the energy-intensive electrospinning process to fabricate high quality factor air filters. A holistic approach on sustainable air filtration models is still lacking. The air filter model presented in this work uses a simple process involving water-induced self-organization and self-regeneration of nanofibers, and an easy recycling route after the filter life that not only facilitates reuse of the microfibrous scaffold holding the nanofibers but also allows renewal of nanofibers. Three generations of air filters are fabricated and tested, all having high particulate matter (PM)-adsorbing tendency, high filtration efficiency (>95%), and high Young's modulus (≈5 GPa). The renewable air filters offer a sustainable alternative to the present cost-intensive electrospun air filters.

8.
Adv Mater ; 31(51): e1902963, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31650636

ABSTRACT

A new approach for artificial photocatalysis of electrical generation directly from atmospheric water is reported. A hybrid system comprising a hydrogel incorporated with Cu2 O and BaTiO3 nanoparticles is developed, wherein the Cu2 O is designed to expose two different crystal planes, namely (100) and (111). These planes exhibit different surface potentials and form a polarization electric field of 2.3 kV cm-1 that acts on a ferroelectric dipole. With the help of this electric field, the dipole is redirected for aiding in positive and negative polarizations with (100) and (111) planes, then boosting water reduction and oxidation kinetics separately at (100) and (111) planes. Additonally, zinc-/cobalt-based superhygroscopic hydrogels serve as a water-capturing "hand" to harness humidity from the ambient environment. The integrated hydrogel-Cu2 O@BaTiO3 hybrid is used to dehumidify air, which can split 36.5 mg of water by employing only 150 mg hydrogel and simultaneously generate a photocurrent of 224.3 µA cm-2 under 10 mW cm-2 illumination.

9.
Adv Mater ; 31(10): e1806730, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30637806

ABSTRACT

Water scarcity is a ubiquitous problem with its magnitude expected to rise in the near future, and efforts to seek alternative water sources are on the rise. Harvesting water from air has intrigued enormous research interest among many groups with Scientific American listing this technology as the second most impactful technology that can bring about a massive change in people's lives. Though desalination offers a huge prospect in mitigating water crisis, its practicality is limited by exorbitant energy requirement. Alternatively, the air above sea water is moisture rich, with the quantity of vapor increasing at the rate of 0.41 kg m-2 . Herein, a method to sustainably harvest water from this moisture rich zone is demonstrated by employing a nanoporous superhygroscopic hydrogel, which is capable of absorbing water from highly humid atmospheres by over 420% (highest) of its own weight. The desorption process from the hydrogel, occurring at 55 °C (lowest), is triggered by natural sunlight (A.M 1.5) thereby ensuing an external energy-less water harvesting approach. The hydrogel exhibits excellent stability even after 1000 absorption/desorption cycles. Through multiple absorption/desorption cycles, it is possible to harvest over 10 L water per kg of hydrogel daily.

10.
Sci Adv ; 4(3): eaao6050, 2018 03.
Article in English | MEDLINE | ID: mdl-29511737

ABSTRACT

Work function is a crucial metric in every optoelectronic device to ensure a specific charge transport scheme. However, the number of stable conductive materials available in a given work function range is scant, necessitating work function modulation. As opposed to all the previous chemical methods of work function modulation, we introduce here an alternative approach involving optical modulation. The work function is the minimum energy needed to eject an electron from a solid into vacuum and is known to be light-intensity-independent. A "light intensity dependent" change in work function was observed in metallic thin films coated on a semiconductor. This new phenomenon, contrasting the existing notions on work function, was tested and affirmed with three different systems, namely, Au/n-Si, Pt/n-Si, and W/n-Si. A work function shift of 0.22 eV is achieved in the Pt/n-Si system merely by tuning the illumination intensity from 0 to 18 mW/cm2. Continuous tuning of work functions to a specified range is now possible just by tuning the light intensity with a few discrete metals in hand. Moreover, selective illumination creates a work function contrast on the metal film, enabling in-plane charge transport. This throws new light on the design and understanding of the optoelectronic devices. In light of this, we also present a simple photodetector design that is sensitive to illumination direction.

SELECTION OF CITATIONS
SEARCH DETAIL
...