Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6918, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38519522

ABSTRACT

Egg specific gravity is of relevance for fish recruitment since the ability to float influences egg and larvae development, dispersal and connectivity between fishing grounds. Using zootechnics, histological approaches, optical and electronic transmission microscopy, this study describes the morphogenetic mechanism of adhesion of the oil-drop covering layer (OCL) to the oil droplet (OD) in embryos of Merluccius merluccius under physical conditions reflecting the marine environment. The herein described primordial (p)OCL is a substructure of the inner yolk syncytial layer which contains egg organella aimed to mobilize lipidic reserves from the oil drop (OD) towards the embryo blood. It is shown that the timely OD-OCL assembly is a critical morphogenetic process for embryo and larvae survival. Such assembly depends on egg buoyance because of its influence on the embryo capacity to rotate within the perivitelline space. Therefore, oil droplet adhesion (ODA) eggs are capable to complete their development while oil droplet non-adhesion eggs (ODNA) dye soon after hatching. We show that gravity-dependent egg buoyance categories exhibit different ODA/ODNA ratios (0-77%) and that relationship diminishes under incubation systems such as sprayers, that do not assure a dynamic seawater surface mixing to avoid egg desiccation. As an adaptive trait, egg gravity strongly depends on oceanic properties such as current dynamics, turbulence, oxygen, rainfall, and salinity, whose rapid changes would likely challenge the sustainability of fisheries recruitment.


Subject(s)
Egg Yolk , Embryo, Nonmammalian , Animals , Egg Yolk/chemistry , Embryonic Development , Eggs
2.
Genes (Basel) ; 15(2)2024 01 27.
Article in English | MEDLINE | ID: mdl-38397160

ABSTRACT

The European sardine (Sardina pilchardus, Walbaum 1792) is indisputably a commercially important species. Previous studies using uneven sampling or a limited number of makers have presented sometimes conflicting evidence of the genetic structure of S. pilchardus populations. Here, we show that whole genome data from 108 individuals from 16 sampling areas across 5000 km of the species' distribution range (from the Eastern Mediterranean to the archipelago of Azores) support at least three genetic clusters. One includes individuals from Azores and Madeira, with evidence of substructure separating these two archipelagos in the Atlantic. Another cluster broadly corresponds to the center of the distribution, including the sampling sites around Iberia, separated by the Almeria-Oran front from the third cluster that includes all of the Mediterranean samples, except those from the Alboran Sea. Individuals from the Canary Islands appear to belong to the Mediterranean cluster. This suggests at least two important geographical barriers to gene flow, even though these do not seem complete, with many individuals from around Iberia and the Mediterranean showing some patterns compatible with admixture with other genetic clusters. Genomic regions corresponding to the top outliers of genetic differentiation are located in areas of low recombination indicative that genetic architecture also has a role in shaping population structure. These regions include genes related to otolith formation, a calcium carbonate structure in the inner ear previously used to distinguish S. pilchardus populations. Our results provide a baseline for further characterization of physical and genetic barriers that divide European sardine populations, and information for transnational stock management of this highly exploited species towards sustainable fisheries.


Subject(s)
Fishes , Metagenomics , Humans , Animals , Fishes/genetics , Portugal , Genome/genetics , Spain
3.
Front Physiol ; 8: 573, 2017.
Article in English | MEDLINE | ID: mdl-28860996

ABSTRACT

Octopus vulgaris is a species of great interest in research areas such as neurobiology, ethology, and ecology but also a candidate species for aquaculture as a food resource and for alleviating the fishing pressure on its wild populations. This study aimed to characterize the predatory behavior of O. vulgaris paralarvae and to quantify their digestive activity. Those processes were affordable using the video-recording analysis of 3 days post-hatching (dph), mantle-transparent paralarvae feeding on 18 types of live zooplanktonic prey. We show for the first time in a live cephalopod that octopus paralarvae attack, immobilize, drill, and ingest live cladocerans and copepods with 100% efficiency, which decreases dramatically to 60% on decapod prey (Pisidia longicornis). The majority (85%) of successful attacks targeted the prey cephalothorax while unsuccessful attacks either targeted the dorsal cephalothorax or involved prey defensive strategies (e.g., juvenile crab megalopae) or prey protected by thick carapaces (e.g., gammaridae amphipods). After immobilization, the beak, the buccal mass and the radula were involved in exoskeleton penetration and content ingestion. Ingestion time of prey content was rapid for copepods and cladocerans (73.13 ± 23.34 s) but much slower for decapod zoeae and euphausiids (152.49 ± 29.40 s). Total contact time with prey was always <5 min. Contrary to the conventional view of crop filling dynamics observed in adult O. vulgaris, food accumulated first in the stomach of paralarvae and the crop filled after the stomach volume plateaued. Peristaltic crop contractions (~18/min) moved food into the stomach (contractions ~30/min) from where it passed to the caecum. Pigmented food particles were seen to enter the digestive gland, 312 ± 32 s after the crop reached its maximum volume. Digestive tract contents passed into the terminal intestine by peristalsis (contraction frequency ~50/min) and defaecation was accompanied by an increased frequency of mantle contractions. Current results provide novel insights into both, O. vulgaris paralarvae-live prey capture strategies and the physiological mechanisms following ingestion, providing key information required to develop an effective rearing protocol for O. vulgaris paralarvae.

4.
Front Physiol ; 8: 362, 2017.
Article in English | MEDLINE | ID: mdl-28620315

ABSTRACT

The common octopus (Octopus vulgaris) is an attractive species for aquaculture, however, several challenges inhibit sustainable commercial production. Little is known about the early paralarval stages in the wild, including diet and intestinal microbiota, which likely play a significant role in development and vitality of this important life stage. High throughput sequencing was used to characterize the gastrointestinal microbiome of wild O. vulgaris paralarvae collected from two different upwelling regions off the coast of North West Spain (n = 41) and Morocco (n = 35). These were compared to that of paralarvae reared with Artemia for up to 25 days in captivity (n = 29). In addition, the gastrointestinal microbiome of zooplankton prey (crabs, copepod and krill) was also analyzed to determine if the microbial communities present in wild paralarvae are derived from their diet. Paralarvae reared in captivity with Artemia showed a depletion of bacterial diversity, particularly after day 5, when almost half the bacterial species present on day 0 were lost and two bacterial families (Mycoplasmataceae and Vibrionaceae) dominated the microbial community. In contrast, bacterial diversity increased in wild paralarvae as they developed in the oceanic realm of both upwelling systems, likely due to the exposure of new bacterial communities via ingestion of a wide diversity of prey. Remarkably, the bacterial diversity of recently hatched paralarvae in captivity was similar to that of wild paralarvae and zooplankton, thus suggesting a marked effect of the diet in both the microbial community species diversity and evenness. This study provides a comprehensive overview of the bacterial communities inhabiting the gastrointestinal tract of O. vulgaris paralarvae, and reveals new research lines to challenge the current bottlenecks preventing sustainable octopus aquaculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...