Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(9): 2928-2941, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35213159

ABSTRACT

Recent advances in using biological scaffolds for nanoparticle synthesis have proven to be useful for preparing various nanostructures with uniform shape and size. Proteins are significant scaffolds for generating various nanostructures partly because of the presence of many functional groups to recognize different chemistries. In this endeavor, cocosin protein, an 11S allergen, is prepared from coconut fruit and employed as a potential scaffold for synthesizing Mn3O4 materials. The interaction between protein and manganese ions is studied in detail through isothermal calorimetric titration. At increased scaffold availability, the Mn3O4 material adopts the exact hexamer structure of the cocosin protein. The electrochemical supercapacitive properties of the cocosin-Mn3O4 material are found to have a high specific capacitance of 751.3 F g-1 at 1 A g-1 with cyclic stability (92% of capacitance retention after 5000 CV cycles) in a three-electrode configuration. The Mn3O4//Mn3O4 symmetric supercapacitor device delivers a specific capacitance of 203.8 F g-1 at 1 A g-1 and an outstanding energy and power density of 91.7 W h kg-1 and 899.5 W kg-1, respectively. These results show that cocosin-Mn3O4 could be considered a suitable electrode for energy storage applications. Moreover, the cocosin protein to be utilized as a novel scaffold in protein-nanomaterial chemistry could be useful for protein-assisted inorganic nanostructure synthesis in the future.


Subject(s)
Manganese Compounds , Oxides , Electric Capacitance , Electrodes
2.
Pest Manag Sci ; 74(12): 2761-2772, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29737039

ABSTRACT

BACKGROUND: The pesticidal properties of many Kunitz-type inhibitors have been reported previously; however, the mechanism of action is not well established. In this study, the activity of alocasin against Aedes aegypti is demonstrated and the structure-activity relationship of this Kunitz-type inhibitor is explained through X-ray structure analyses. RESULTS: Alocasin was purified from mature rhizomes of Alocasia as a single polypeptide chain of ∼ 20 kDa. The structure at 2.5 Å resolution revealed a Kunitz-type fold, but variation in the loop regions makes this structure unique; one loop with a single disulfide bridge is replaced by a long loop with two bridges. Alignment of homologous sequences revealed that this long loop contains a conserved Arg residue and modeling studies showed interaction with the catalytic Ser residue of trypsin-like enzymes. The anti-Aedes aegypti activity of alocasin is examined and discussed in detail. The in vitro activity of alocasin against midgut proteases of Aedes aegypti showed profound inhibition. Further, morphological changes in larvae upon treatment with alocasin revealed its activity against Ae. aegypti. Docking studies of alocasin with trypsin (5G1), a midgut protease involved in the development cycle and blood meal digestion, illustrated its insecticidal activity. CONCLUSION: The three-dimensional structure of alocasin was determined and its structure-function relationship established for its anti Ae. aegypti activity. © 2018 Society of Chemical Industry.


Subject(s)
Aedes/drug effects , Aedes/enzymology , Peptide Hydrolases/metabolism , Plant Proteins/chemistry , Plant Proteins/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Kinetics , Models, Molecular , Protein Conformation , Proteolysis , Structure-Activity Relationship , Thermodynamics
3.
J Mol Biol ; 335(1): 275-82, 2004 Jan 02.
Article in English | MEDLINE | ID: mdl-14659756

ABSTRACT

The structure of the N-terminal domain (NTD) of Rous sarcoma virus (RSV) capsid protein (CA), with an upstream 25 amino acid residue extension corresponding to the C-terminal portion of the Gag p10 protein, has been determined by X-ray crystallography. Purified Gag proteins of retroviruses can assemble in vitro into virus-like particles closely resembling in vivo-assembled immature virus particles, but without a membrane. When the 25 amino acid residues upstream of CA are deleted, Gag assembles into tubular particles. The same phenotype is observed in vivo. Thus, these residues act as a "shape determinant" promoting spherical assembly, when they are present, or tubular assembly, when they are absent. We show that, unlike the NTD on its own, the extended NTD protein has no beta-hairpin loop at the N terminus of CA and that the molecule forms a dimer in which the amino-terminal extension forms the interface between monomers. Since dimerization of Gag has been inferred to be a critical step in assembly of spherical, immature Gag particles, the dimer interface may represent a structural feature that is essential in retrovirus assembly.


Subject(s)
Avian Sarcoma Viruses/chemistry , Capsid Proteins/chemistry , Gene Products, gag/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Models, Molecular , Protein Structure, Tertiary , Sequence Deletion , Virion/chemistry
4.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 12): 2053-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14646061

ABSTRACT

The Phycodnaviridae, Iridoviridae and related viruses, with diameters of 1500-2000 A, are formed from large trigonal arrays of hexagonally close-packed capsomers forming the faces of icosahedra [Yan et al. (2000), Nature Struct. Biol. 7, 101-103; Nandhagopal et al. (2002), Proc. Natl Acad. Sci. USA, 99, 14758-14763]. Caspar and Klug predicted that such structures could be assembled from hexameric capsomers [Caspar & Klug (1962), Cold Spring Harbor. Symp. Quant. Biol. 27, 1-24], as was subsequently found in numerous icosahedral viruses. During the course of evolution, some viruses, including the virus families mentioned above, replaced hexameric capsomers with pseudo-hexameric trimers by gene duplication. In large dsDNA icosahedral viruses, the capsomers are organized into 'pentasymmetrons' and 'trisymmetrons'. The interactions between the trimeric capsomers can be divided into three groups, one between similarly oriented trimers and two between oppositely oriented trimers (trimers related by an approximately sixfold rotation). The interactions within a trisymmetron belong to the first class, whereas those between trisymmetrons and within the pentasymmetron are of the other two types. Knowledge of these distances permits a more accurate fitting of the atomic structure of the capsomer into the cryo-electron microscopy (cryoEM) reconstruction of the whole virus. The adoption of pseudo-hexagonal capsomers places these viruses into a subset of the Caspar and Klug surface lattices.


Subject(s)
Iridoviridae/ultrastructure , Phycodnaviridae/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , DNA, Viral/chemistry , DNA, Viral/ultrastructure , Iridoviridae/chemistry , Models, Molecular , Phycodnaviridae/chemistry , Protein Conformation
5.
Proc Natl Acad Sci U S A ; 99(23): 14758-63, 2002 Nov 12.
Article in English | MEDLINE | ID: mdl-12411581

ABSTRACT

Paramecium bursaria Chlorella virus type 1 (PBCV-1) is a very large, icosahedral virus containing an internal membrane enclosed within a glycoprotein coat consisting of pseudohexagonal arrays of trimeric capsomers. Each capsomer is composed of three molecules of the major capsid protein, Vp54, the 2.0-A resolution structure of which is reported here. Four N-linked and two O-linked glycosylation sites were identified. The N-linked sites are associated with nonstandard amino acid motifs as a result of glycosylation by virus-encoded enzymes. Each monomer of the trimeric structure consists of two eight-stranded, antiparallel beta-barrel, "jelly-roll" domains related by a pseudo-sixfold rotation. The fold of the monomer and the pseudo-sixfold symmetry of the capsomer resembles that of the major coat proteins in the double-stranded DNA bacteriophage PRD1 and the double-stranded DNA human adenoviruses, as well as the viral proteins VP2-VP3 of picornaviruses. The structural similarities among these diverse groups of viruses, whose hosts include bacteria, unicellular eukaryotes, plants, and mammals, make it probable that their capsid proteins have evolved from a common ancestor that had already acquired a pseudo-sixfold organization. The trimeric capsid protein structure was used to produce a quasi-atomic model of the 1,900-A diameter PBCV-1 outer shell, based on fitting of the Vp54 crystal structure into a three-dimensional cryoelectron microscopy image reconstruction of the virus.


Subject(s)
Capsid/chemistry , DNA Viruses/chemistry , Capsid/ultrastructure , Cryoelectron Microscopy , Evolution, Molecular , Glycosylation , Models, Molecular , Protein Conformation , Protein Subunits/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...