Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37642990

ABSTRACT

Human adenovirus (HADV) infection can pose a serious threat to children, leading to a variety of respiratory illnesses and other complications. Particularly, children with weak immune systems are vulnerable to severe adenovirus infections with high mortality. The main focus of this study is to propose new antiviral agents as lead HADV inhibitors for children. So, several antiviral agents used in children were subjected to finding new HADV inhibitors using important computational methods of molecular docking, molecular dynamics (MD) simulation, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations, density functional theory (DFT), and pharmacokinetic analysis. Molecular docking of standard cidofovir along with other ligands, suggested that sofosbuvir has the highest binding energy (-10.8 kcal/mol), followed by baloxavir marboxil (-10.36 kcal/mol). Further, the analysis of molecular interactions using MD simulation (100 ns) and MM-PBSA indicated that baloxavir marboxil has formed the most stable protein-ligand complex with HADV, followed by sofosbuvir. The binding free energies of baloxavir marboxil and sofosbuvir were found to be -61.724 kJ/mol and -48.123 kJ/mol, respectively. The DFT and drug-likeness properties of these compounds were also investigated. Overall, two antiviral agents, such as baloxavir marboxil, and sofosbuvir are suggested as lead repurposed candidates against HADV.Communicated by Ramaswamy H. Sarma.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 061124, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20866395

ABSTRACT

Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL