Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2309428, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529777

ABSTRACT

Bismuth sulfide (Bi2S3) exhibits a direct energy bandgap and an exceptional optical absorption capability over a broadband radiation, thus presents a novel class of 2D photodetector material. The field effect transistor (FET) photodetector device is fabricated from 2D Bi2S3. An anomalous variation in the transport characteristics of 2D Bi2S3 is observed with the variation in temperature. The electrical resistance reduces by 99.26% at 10 K compared to the response at 300 K. Defects due to the bismuth and sulfur vacancies play a critical role in the dramatic behavior, which is confirmed using photoluminescence, time-resolved photoluminescence, Hall measurements, and energy dispersive X-ray spectroscopy. The density functional theory calculations provide a significant insight into the thermodynamic properties of intrinsic defects in Bi2S3. Moreover, the effect of gate bias on responsivity additionally confirms its invariance at low temperature. The Bi2S3 based FET photodetector achieves ultrahigh responsivity in the order of ≈106 A W-1 and detectivity of ≈1014 Jones. Moreover, the external quantum efficiency of ≈107% is measured in a wide spectrum of optical illumination (532 to 1064 nm) with a noise-equivalent power of 3.5 × 10-18 W/√Hz at a bias of 0.2 V. The extraordinary performance of Bi2S3 photodetector outstands 2D photodetectors.

2.
Nano Lett ; 23(24): 11501-11509, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37890054

ABSTRACT

Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the resonance, in excellent agreement with finite-difference time-domain simulations. This work highlights the potential of Bi2Se3 for quantum circuitry, nonlinear generation, high-Q metaphotonics, and photodetection.

3.
ACS Appl Mater Interfaces ; 12(1): 1315-1321, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31823606

ABSTRACT

A novel spray coating and transfer method is developed for fabricating a suspended bolometer of vanadium oxide-coated multiwalled carbon nanotubes (VCNTs). A parametric study was performed to evaluate the effect of the substrate, modulation frequency, and temperature on the bolometric performance and revealed that the performance of the bolometer solely does not depend on the substrate parameter but modulation frequency and bias current as a function of temperature also play a key attribute. The TCR (temperature coefficient of resistance) of the suspended VCNT bolometer is ∼-0.41%/K which is ∼486% higher than the reported suspended multiwalled CNTs at 300 K. Moreover, the suspended bolometer has a voltage responsivity of ∼67.42 ± 5.46 V/W (∼7.68 times that of unsuspended) at 200 K. Thus, the study presents an efficient method to develop the suspended bolometer that has not been realized so far to obtain much higher TCR and responsivity.

4.
Nanoscale ; 10(7): 3451-3459, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29393951

ABSTRACT

The pyro-phototronic effect can be used in pyroelectric semiconductor materials to significantly contribute in enhancing the self-powered photoresponse of photodetectors (PDs) via modulation of the photogenerated charge density. The pyro-phototronic effect in zinc oxide (ZnO) nanorods (NRs) was exploited thoroughly by doping with halogen elements, such as fluorine, chlorine (Cl), bromine and iodine. Cl-doped ZnO NRs (Cl : ZnO NRs) induces a large number of free charge carriers to enhance the self-powered photoresponse behavior (nearly 333% enhancement in response current) due to the pyro-phototronic effect as compared to pristine ZnO NRs. Moreover, 405% enhancement in pyrocurrent was measured for the Cl : ZnO NRs PD under a ultraviolet illumination intensity of 3 mW cm-2, as compared to 0.3 mW cm-2, in the absence of external bias voltage. Furthermore, other photoresponse parameters such as responsivity, external quantum efficiency and specific detectivity are measured to be higher due to the pyro-phototronic effect. Therefore, this study reveals the direct use of the pyro-phototronic effect to enhance the self-powered photoresponse.

5.
Nanotechnology ; 28(39): 395101, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28696341

ABSTRACT

Multiwalled carbon nanotubes (CNTs) are uniformly distributed with piezoelectric microspheres. This leads to a large strain gradient due to an induced capacitive response, providing a 250% enhancement in electromechanical response compared with pristine CNTs. The fabricated large-area flexible thin film exhibits excellent pressure sensitivity, which can even detect an arterial pulse with a much faster response time (∼79 ms) in a bendable configuration. In addition, the film shows a rapid relaxation time (∼0.4 s), high stability and excellent durability with a rapid loading-unloading cycle. The dominant contribution of piezoelectric microspheres in a CNT matrix as opposed to nanoparticles showed a much higher sensitivity due to the large change in capacitance. Therefore, hybrid microstructures have various potential applications in wearable smart electronics, including detection of human motion and wrist pulses.

6.
Saudi J Kidney Dis Transpl ; 27(6): 1239-1241, 2016.
Article in English | MEDLINE | ID: mdl-27900972

ABSTRACT

A 9-year-old female child was initially diagnosed of having nephrocalcinosis with distal renal tubular acidosis (dRTA) while investigating for short stature. She later on developed features of nephrotic syndrome (NS) while on treatment for RTA. Investigation for the cause of NS revealed very strong serological evidence in favor of systemic lupus erythematosus (SLE). Histopathological confirmation could not be done due to bilateral severely contracted kidneys. There are a few case reports of dRTA as the presentation of SLE, but nephrocalcinosis with dRTA with subsequent manifestation of SLE has hitherto not been reported in literature.


Subject(s)
Lupus Nephritis , Nephrocalcinosis , Acidosis, Renal Tubular , Child , Failure to Thrive , Female , Humans , Lupus Erythematosus, Systemic
SELECTION OF CITATIONS
SEARCH DETAIL
...