Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 920: 170886, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38360323

ABSTRACT

The Eurasian steppe is the largest temperate grassland in the world. The grassland of the Mongolian Plateau (MP) represents an important part of the Eurasian steppe with high climatic sensitivity. Gross primary productivity (GPP) is a key indicator of the grassland's production, status and dynamic on the MP. In this study, we calibrated and evaluated the grassland-specific light use efficiency model (GRASS-LUE) against the observed GPP collected from nine eddy covariance flux sites on the MP, and compared the performance with other four GPP products (MOD17, VPM, GLASS and GOSIF). GRASS-LUE with higher R2 (0.91) and lower root mean square error (RMSE = 0.99 gC m-2 day-1) showed a better performance compared to the four GPP products in terms of model accuracy and dynamic consistency, especially in typical and desert steppe. The parameters of the GRASS-LUE are more suitable for water-limited grassland could be the reason for its outstanding performance in typical and desert steppe. Mean grassland GPP derived from GRASS-LUE was higher in the east and lower in the west of the MP. Grassland GPP was on average 205 gC m-2 over the MP between 2001 and 2020 with mean annual total GPP of 322 TgC yr-1. 30 % of the MP steppe showed a significant GPP increase. Growing season precipitation is the main factor affecting GPP of the MP steppe across regions. Anthropogenic factors (livestock density and population density) had greater effect on GPP than growing season temperature in pastoral counties in IM that take grazing as one of main industries. These findings can inform the status and trend of the productivity of MP steppe and help government and scientific research institutions to understand the drivers for spatial pattern of grassland GPP on the MP.

2.
Sci Rep ; 8(1): 14769, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30283039

ABSTRACT

Socio-ecological damage from climate-related disasters has increased worldwide, including a type of cold-season disaster (dzud) that is unique to the Eurasian steppes, notably Mongolia. During 2000-2014, dzuds killed approximately 30 million livestock and impacted the Mongolian socio-economy. The contributions of both natural and social processes to livestock mortality were not previously considered across Mongolia. Here, we consider the contribution of both multiple climate hazards (drought, cold temperatures and snow), and socioeconomic vulnerability (herders' livestock and coping-capacity) to mortality risk. We performed multi-regression analyses for each province using meteorological, livestock and socioeconomic datasets. Our results show that 93.5% of mortality within Mongolia was caused by a combination of multi-hazards (47.3%) and vulnerability (46.2%), suggesting dzuds were both climate- and man-made. However, in high-mortality hotspots, mortality was primarily caused by multi-hazards (drought-induced pasture deficiency and deep-snow). Livestock overpopulation and a lack of coping capacities that caused inadequate preparedness (e.g., hay/forage) were the main vulnerability factors. Frequent and severe multi-hazards greatly increased the mortality risk, while increased vulnerability caused by socioeconomic changes in Mongolia since the 1990s tended to amplify the effects of multi-hazards. Thus, reductions in herder vulnerability within high-mortality hotspots would likely be an effective means of mitigating the risk of future dzuds.


Subject(s)
Climate , Disasters , Ecosystem , Grassland , Animals , Climate Change , Cold Temperature , Humans , Livestock , Mongolia/epidemiology , Seasons , Snow
3.
Sci Rep ; 8(1): 15905, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30349071

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...