Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 592(7856): 704-707, 2021 04.
Article in English | MEDLINE | ID: mdl-33911275

ABSTRACT

Quasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei1,2. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data1,2, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole3,4. Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk5-9. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body10, and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals11-13, with considerable implications for multi-messenger astrophysics and cosmology14,15.

2.
Nature ; 588(7837): 227-231, 2020 12.
Article in English | MEDLINE | ID: mdl-33299190

ABSTRACT

The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the Milky Way1-4; however, the origin of this energy (star formation or supermassive-black-hole activity) is uncertain, and the causal connection between nuclear structures and large-scale features has not been established unequivocally. Here we report soft-X-ray-emitting bubbles that extend approximately 14 kiloparsecs above and below the Galactic centre and include a structure in the southern sky analogous to the North Polar Spur. The sharp boundaries of these bubbles trace collisionless and non-radiative shocks, and corroborate the idea that the bubbles are not a remnant of a local supernova5 but part of a vast Galaxy-scale structure closely related to features seen in γ-rays6. Large energy injections from the Galactic centre7 are the most likely cause of both the γ-ray and X-ray bubbles. The latter have an estimated energy of around 1056 erg, which is sufficient to perturb the structure, energy content and chemical enrichment of the circumgalactic medium of the Milky Way.

3.
Nature ; 567(7748): 347-350, 2019 03.
Article in English | MEDLINE | ID: mdl-30894726

ABSTRACT

Evidence has mounted in recent decades that outflows of matter and energy from the central few parsecs of our Galaxy have shaped the observed structure of the Milky Way on a variety of larger scales1. On scales of 15 parsecs, the Galactic Centre has bipolar lobes that can be seen in both the X-ray and radio parts of the spectrum2,3, indicating broadly collimated outflows from the centre, directed perpendicular to the Galactic plane. On larger scales, approaching the size of the Galaxy itself, γ-ray observations have revealed the so-called 'Fermi bubble' features4, implying that our Galactic Centre has had a period of active energy release leading to the production of relativistic particles that now populate huge cavities on both sides of the Galactic plane. The X-ray maps from the ROSAT all-sky survey show that the edges of these cavities close to the Galactic plane are bright in X-rays4-6. At intermediate scales (about 150 parsecs), radio astronomers have observed the Galactic Centre lobe, an apparent bubble of emission seen only at positive Galactic latitudes7,8, but again indicative of energy injection from near the Galactic Centre. Here we report prominent X-ray structures on these intermediate scales (hundreds of parsecs) above and below the plane, which appear to connect the Galactic Centre region to the Fermi bubbles. We propose that these structures, which we term the Galactic Centre 'chimneys', constitute exhaust channels through which energy and mass, injected by a quasi-continuous train of episodic events at the Galactic Centre, are transported from the central few parsecs to the base of the Fermi bubbles4.

4.
Science ; 361(6401): 482-485, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29903886

ABSTRACT

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.

5.
Science ; 345(6192): 64-8, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24994647

ABSTRACT

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

6.
Astrophys J ; 525(1): L9-L12, 1999 Nov 01.
Article in English | MEDLINE | ID: mdl-10511501

ABSTRACT

We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).

7.
Pathol Res Pract ; 184(2): 161-7, 1989 Feb.
Article in English | MEDLINE | ID: mdl-2710682

ABSTRACT

Ciliogenesis of the respiratory epithelium in the human cartilaginous trachea start during the 12th week of gestation. Ciliary shafts are first seen under the scanning electron microscope during the 13th week. Unlike its membranous counterpart, ciliary shafts appear all over the epithelial surface at almost the same time. Epithelial cells destined to become ciliated cells first develop numerous long and thin microvilli. A process of individual cell extrusion and proliferation of neuroepithelial bodies around the carinal angle precede ciliation in the respiratory epithelium of the cartilaginous trachea. Epithelial cell differentiation patterns in both the cartilaginous and membranous trachea are different. The mechanisms involved in modulating cell differentiation are currently under investigation.


Subject(s)
Cartilage/ultrastructure , Cilia/ultrastructure , Fetus/anatomy & histology , Respiratory System/cytology , Trachea/ultrastructure , Cartilage/cytology , Epithelial Cells , Epithelium/ultrastructure , Fetus/cytology , Gestational Age , Humans , Microscopy, Electron , Microscopy, Electron, Scanning , Respiratory System/embryology , Respiratory System/ultrastructure , Trachea/cytology , Trachea/embryology
8.
Ciba Found Symp ; 113: 168-90, 1985.
Article in English | MEDLINE | ID: mdl-3849405

ABSTRACT

Bladder cancer has a 70% recurrence rate within five years and a high associated mortality. It commonly occurs in one or both of two predominant growth/behaviour patterns: either well-differentiated, relatively benign exophytic papillary lesions, or flat, poorly differentiated invasive carcinoma usually arising from carcinoma-in-situ. We have used the F344 rat treated with N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) as a model for the papillary disease, and the BBN-treated B6D2F1 mouse for flat, invasive bladder carcinoma. In the rat, carcinogenesis is a multistage process and several retinoids will delay or even halt the development of bladder cancer. Inhibition of carcinogenesis is not complete, but there is a consistent reduction in the time-related incidence of papillomas and carcinomas and a concomitant improvement in the overall differentiation of the urothelium. In the BBN/mouse model, retinoids also have anticarcinogenic activity but interpretation of the results is more complicated. Unlike the F344 rat, the B6D2F1 mouse has a non-uniform response to BBN; not all mice develop bladder cancer even after treatment with very high doses of BBN and in those that do, more than one mechanism of carcinogenesis may be involved. Individual retinoids differ markedly in their ability to modulate bladder carcinogenesis in rodents; the behaviour of one analogue cannot be predicted automatically from data obtained with another. Combined data from rodent trials in this and other laboratories have identified N-(4-hydroxyphenyl)retinamide (HPR) as the most anticarcinogenic retinoid tested so far for the rodent bladder. It is also less toxic in rodents and better tolerated in humans than either 13-cis-retinoic acid or etretinate, two retinoids currently used in dermatological practice. A prophylactic chemopreventive trial of HPR in bladder cancer patients starting in 1985 will be centered on the Middlesex Hospital, London.


Subject(s)
Retinoids/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Animals , Butylhydroxybutylnitrosamine , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Epithelium/drug effects , Epithelium/pathology , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , Retinoids/administration & dosage , Time Factors , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/diet therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...