Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Spine Surg ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38531819

ABSTRACT

STUDY DESIGN: Preclinical animal study. OBJECTIVE: Evaluate the osteoinductivity and bone regenerative capacity of BioRestore bioactive glass. SUMMARY OF BACKGROUND DATA: BioRestore is a Food and Drug Administration (FDA)-approved bone void filler that has not yet been evaluated as a bone graft extender or substitute for spine fusion. METHODS: In vitro and in vivo methods were used to compare BioRestore with other biomaterials for the capacity to promote osteodifferentiation and spinal fusion. The materials evaluated (1) absorbable collagen sponge (ACS), (2) allograft, (3) BioRestore, (4) Human Demineralized Bone Matrix (DBM), and (5) MasterGraft. For in vitro studies, rat bone marrow-derived stem cells (BMSC) were cultured on the materials in either standard or osteogenic media (SM, OM), followed by quantification of osteogenic marker genes (Runx2, Osx, Alpl, Bglap, Spp1) and alkaline phosphatase (ALP) activity. Sixty female Fischer rats underwent L4-5 posterolateral fusion (PLF) with placement of 1 of 5 implants: (1) ICBG from syngeneic rats; (2) ICBG+BioRestore; (3) BioRestore alone; (4) ICBG+Allograft; or (5) ICBG+MasterGraft. Spines were harvested 8 weeks postoperatively and evaluated for bone formation and fusion via radiography, blinded manual palpation, microCT, and histology. RESULTS: After culture for 1 week, BioRestore promoted similar expression levels of Runx2 and Osx to cells grown on DBM. At the 2-week timepoint, the relative ALP activity for BioRestore-OM was significantly higher (P<0.001) than that of ACS-OM and DBM-OM (P<0.01) and statistically equivalent to cells grown on allograft-OM. In vivo, radiographic and microCT evaluation showed some degree of bridging bone formation in all groups tested, with the exception of BioRestore alone, which did not produce successful fusions. CONCLUSIONS: This study demonstrates the capacity of BioRestore to promote osteoinductivity in vitro. In vivo, BioRestore performed similarly to commercially available bone graft extender materials but was incapable of producing fusion as a bone graft substitute. LEVEL OF EVIDENCE: Level V.

2.
Spine (Phila Pa 1976) ; 47(23): 1627-1636, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35943241

ABSTRACT

STUDY DESIGN: This was a preclinical study. OBJECTIVE: Evaluate sex-dependent differences in the bone healing response to recombinant human bone morphogenetic protein-2 (rhBMP-2) in a rat posterolateral spinal fusion model. SUMMARY OF BACKGROUND DATA: Minimal and conflicting data exist concerning potential sex-dependent differences in rhBMP-2-mediated bone regeneration in the context of spinal fusion. MATERIALS AND METHODS: Forty-eight female and male Sprague-Dawley rats (N=24/group), underwent L4-L5 posterolateral fusion with bilateral placement of an absorbable collagen sponge, each loaded with 5 µg of bone morphogenetic protein-2 (10 µg/animal). At eight weeks postoperative, 10 specimens of each sex were tested in flexion-extension with quantification of range of motion and stiffness. The remaining specimens were evaluated for new bone growth and successful fusion via radiography, blinded manual palpation and microcomputed tomography (microCT). Laboratory microCT quantified bone microarchitecture, and synchrotron microCT examined bone microstructure at the 1 µm level. RESULTS: Manual palpation scores differed significantly between sexes, with mean fusion scores of 2.4±0.4 in females versus 3.1±0.6 in males ( P <0.001). Biomechanical stiffness did not differ between sexes, but range of motion was significantly greater and more variable for females versus males (3.7±5.6° vs. 0.27±0.15°, P <0.005, respectively). Laboratory microCT showed significantly smaller volumes of fusion masses in females versus males (262±87 vs. 732±238 mm 3 , respectively, P <0.001) but significantly higher bone volume fraction (0.27±0.08 vs. 0.12±0.05, respectively, P <0.001). Mean trabecular thickness was not different, but trabecular number was significantly greater in females (3.1±0.5 vs. 1.5±0.4 mm -1 , respectively, P <0.001). Synchrotron microCT showed fine bone structures developing in both sexes at the eight-week time point. CONCLUSIONS: This study demonstrates sex-dependent differences in bone regeneration induced by rhBMP-2. Further investigation is needed to uncover the extent of and mechanisms underlying these sex differences, particularly at different doses of rhBMP-2.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Humans , Female , Male , Rats , Animals , Lumbar Vertebrae/surgery , Sex Characteristics , X-Ray Microtomography , Rats, Sprague-Dawley , Bone Morphogenetic Protein 2/pharmacology , Transforming Growth Factor beta/pharmacology , Spinal Fusion/methods , Recombinant Proteins/pharmacology
3.
Spine (Phila Pa 1976) ; 46(13): 886-892, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34100841

ABSTRACT

STUDY DESIGN: Literature-based review. OBJECTIVE: We sought to evaluate clinical and case studies related to return to play (RTP) after cervical spine injuries in elite American football athletes and to formulate guidelines to help health care practitioners manage these conditions. SUMMARY OF BACKGROUND DATA: American football athletes are at unique risk of cervical spine injury and appropriate case-by-case management of cervical spine injuries is necessary for these athletes. Despite this need, no standardized guidelines exist for RTP after cervical spine injury. METHODS: Observational or case-based articles relating to RTP after cervical spine injury in American football athletes were curated from PubMed/EMBASE databases. Primary literature published before December 1, 2019 involving National Football League (NFL) or National Collegiate Athletic Association (NCAA) athletes met inclusion criteria. RESULTS: The data acquisition process yielded 28 studies addressing cervical spine injuries and RTP in American football athletes. Stingers/burners were the most common injury and placed athletes at higher risk of a more severe re-injury. Transient quadriplegia, cervical stenosis, cervical disc herniation (CDH), and cervical fractures have a more significant impact on the long-term health and career longevity of the American football athlete. As such, the literature offers some guidance for management of these athletes, including average time for RTP in patients treated nonoperatively, thresholds involving cervical stenosis, and postoperative recommendations after spinal decompression and/or fusion surgery. CONCLUSION: Elite American football athletes are at high risk for cervical spine injury due to the nature of their sport. The decision to allow these athletes to return to play should involve an understanding of the average RTP time, the potential risks of recurrence or re-injury, and individual characteristics such as position played and pathology on imaging.Level of Evidence: 3.


Subject(s)
Athletes/statistics & numerical data , Cervical Vertebrae/injuries , Football , Return to Sport/statistics & numerical data , Spinal Injuries/epidemiology , Humans
4.
JOR Spine ; 4(4): e1173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35005440

ABSTRACT

BACKGROUND: Due to the constraints surrounding autograft bone, surgeons have turned to osteoinductive agents to augment spinal fusion. Reports of complications and questionable efficacy slowed the adoption of these alternatives. Recombinant human platelet-derived growth factor B homodimer (rhPDGF-BB) has been Food and Drug Administration (FDA)-approved (Augment) to promote fusion in other areas of orthopedics, but its characterization in spine fusion has not yet been tested. The purpose of this study is to characterize the host response to PDGF-BB in vivo. METHODS: Eighty female Fischer rats underwent L4-5 posterolateral fusion using one of four implant types: (a) iliac crest syngeneic allograft harvested from syngeneic donors, (b) ß-TCP/bovine collagen matrix (ß-TCP/Col) with sodium acetate buffer, (c) ß-TCP/Col with 0.3 mg/mL "low dose," or (d) ß-TCP/Col with 3.0 mg/mL "high dose" of rhPDGF-BB. Animals underwent magnetic resonance imaging (MRI) and serum cytokine quantification at 4, 7, 10, and 21 days, postoperatively. Tissues were processed for immunofluorescence staining for Ki67 and von Willebrand factor (vWF) to assess neovascularization. RESULTS: MRI demonstrated no differences in fluid accumulation among the four treatment groups at any of the time points. Serum cytokine analysis showed no clinically significant differences between treatment groups in 20 of the 27 cytokines. Inflammatory cytokines IFN-γ, IL-1ß, IL-18, MCP-1, MIP-1α, TNF-α were not induced by rhPDGF-BB. Histology showed no differences in cell infiltration, and Ki67 and vWF immunofluorescence staining was similar among groups. CONCLUSIONS: rhPDGF-BB delivered with a ß-TCP/Col matrix exerts no exaggerated systemic or local host inflammatory response when compared to iliac crest syngeneic allograft bone or the control carrier. rhPDGF-BB mixed with a ß-TCP/Col matrix could be a viable and safe biologic alternative to syngeneic allograft in spine fusion. Further studies need to be performed to evaluate efficacy in this setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...