Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5265, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902238

ABSTRACT

Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.


Subject(s)
Dyrk Kinases , Mitochondria , Mitochondrial Membrane Transport Proteins , Mitochondrial Precursor Protein Import Complex Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Mitochondria/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Phosphorylation , Protein Transport , HEK293 Cells , HeLa Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
2.
Environ Sci Ecotechnol ; 16: 100276, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37206316

ABSTRACT

Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies. Soil microbial fuel cell (SMFC) technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation. In this study, an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time. An innovative carbon nanofibers electrode doped with Fe (CNFFe) is used as cathode material in membrane-less SMFCs, and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth (PtC), carbon cloth, or graphite felt (GF) as the cathode. Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm. The results show that CNFFe and PtC generate very stable performances, with a peak power density (with respect to the cathode geometric area) of 25.5 and 30.4 mW m-2, respectively. The best electrochemical performance was obtained with GF, with a peak power density of 87.3 mW m-2. Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities. The anodes were predominantly enriched with Geobacter and Pseudomonas species, while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria, indicating H2 cycling as a possible electron transfer mechanism. The presence of nitrate-reducing bacteria, combined with the results of cyclic voltammograms, suggests microbial nitrate reduction occurred on GF cathodes. The results of this study can contribute to the development of effective SMFC design strategies for field implementation.

3.
Nat Commun ; 13(1): 6061, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229432

ABSTRACT

Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.


Subject(s)
Mitochondrial Diseases , Ubiquinone , Ataxia , Humans , Manganese/toxicity , Mitochondrial Diseases/metabolism , Mixed Function Oxygenases , Muscle Weakness , Ubiquinone/deficiency , Ubiquinone/metabolism
4.
J Phys Chem Lett ; 11(14): 5569-5576, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32573237

ABSTRACT

Extracellular vesicles (EVs), naturally occurring nanosized vesicles secreted from cells, are essential for intercellular communication. They carry unique biomolecules on the surface or interior that are of great interest as biomarkers for various pathological conditions such as cancer. In this work, we use high-resolution atomic force microscopy (AFM) and spectroscopy (AFS) techniques to demonstrate differences between EVs derived from colon cancer cells and colon epithelial cells at the single-vesicle level. We observe that EV populations are significantly increased in the cancer cell media compared to the normal cell EVs. We show that both EVs display an EV marker, CD9, while EVs derived from the cancer cells are slightly higher in density. Hyaluronan (HA) is a nonsulfated glycosaminoglycan linked to malignant tumor growth according to recent reports. Interestingly, at the single-vesicle level, colon cancer EVs exhibit significantly increased HA surface densities compared to the normal EVs. Spectroscopic measurements such as Fourier transform infrared (FT-IR), circular dichroism (CD), and Raman spectroscopy unequivocally support the AFM and AFS measurements. To our knowledge, it represents the first report of detecting HA-coated EVs as a potential colon cancer biomarker. Taken together, this sensitive approach will be useful in identifying biomarkers in the early stages of detection and evaluation of cancer.


Subject(s)
Biomarkers, Tumor/analysis , Colonic Neoplasms/metabolism , Extracellular Vesicles/metabolism , Hyaluronic Acid/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Humans , Hyaluronic Acid/metabolism , Microscopy, Atomic Force , Spectrophotometry, Atomic , Tetraspanin 29/analysis
5.
Microb Cell ; 7(4): 106-114, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32274389

ABSTRACT

The protein phosphatase calcineurin is activated in response to rising intracellular Ca2+ levels and impacts fundamental cellular processes in organisms ranging from yeast to humans. In fungi, calcineurin orchestrates cellular adaptation to diverse environmental challenges and is essential for virulence of pathogenic species. To enable rapid and large-scale assessment of calcineurin activity in living, unperturbed yeast cells, we have generated stable and destabilized GFP transcriptional reporters under the control of a calcineurin-dependent response element (CDRE). Using the reporters, we show that the rapid dynamics of calcineurin activation and deactivation can be followed by flow cytometry and fluorescence microscopy. This system is compatible with live/dead staining that excludes confounding dead cells from the analysis. The reporters provide technology to monitor calcineurin dynamics during stress and ageing and may serve as a drug-screening platform to identify novel antifungal compounds that selectively target calcineurin.

6.
J Hazard Mater ; 389: 121845, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31862354

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) are organic pollutants that require remediation due to their detrimental impact on human and environmental health. In this study, we used a novel approach of sequestering a model PAH, phenanthrene, onto a solid carbon matrix bioanode in a microbial fuel cell (MFC) to assess its biodegradation coupled with power generation. Here, the bioanode serves as a site for enrichment of electroactive and hydrocarbon-degrading microorganisms, which can simultaneously act to biodegrade a pollutant and generate power. Carbon cloth electrodes loaded with two rates of phenanthrene (2 and 20 mg cm-2) were compared using dual chamber MFCs that were operated for 50 days. The lower loading rate of 2 mg cm-2 was most efficient in the degradation of phenanthrene and had higher power production capacities (37 mW m-2) as compared to the higher loading rate of 20 mg cm-2 (power production of 19.2 mW m-2). FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed a depletion in absorbance peak signals associated with phenanthrene. Microbes known to have electroactive properties or phenanthrene biodegradation abilities like Pseudomonas, Rhodococcus, Thauera and Ralstonia were enriched over time in the MFCs, substantiating the electrochemical and FTIR analyses. The MFC approach taken here thus offers great promise towards PAH bioelectroremediation.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Microbial Consortia , Phenanthrenes/analysis , Soil Pollutants/analysis , Anaerobiosis , Biodegradation, Environmental , DNA/genetics , Electrodes , Microbial Consortia/genetics , Soil/chemistry , Soil Microbiology , Soot/chemistry
7.
Biosens Bioelectron ; 79: 796-801, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26774096

ABSTRACT

The main emphasis of this study is to understand the electroactive behavior of a microbe in microbial fuel cell (MFC) under specific selection pressure. This study explores potential of a non-electrogenic microbe for power production in a mediatorless MFC under the influence of a specific stress. Electric pulse of specific magnitude has been applied to Escherichia coli cells in a MFC and compared the results with unpulsed (control) MFC. Maximum power density of 187.77 mW/m(2) and 284.44 mW/m(2) for the control and experimental MFC has been observed at corresponding current density of 1444.44 mA/m(2) and 1777.77 mA/m(2). The results show improved performance for the pulsed (experimental) system, despite of initial downfall with respect to the control system. This suggests bacterial adaptation against electrical pulses which leads to evolution of an efficient electrogen. This observation is further confirmed by analyzing the results of Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) Electrochemical Impedence Spectroscopy (EIS), enlightening different attributes like electrochemical property, bacterial morphology and impedance. The study is focused on development of a microbial fuel cell catalysed by E. coli, through triggering electroactive property in the microbe by exposing it to external stress. This study is unique in nature as it is mediatorless, economical and describes about a new method of natural bacterial evolution.


Subject(s)
Bioelectric Energy Sources/microbiology , Escherichia coli/cytology , Electricity , Equipment Design
8.
N Biotechnol ; 32(2): 272-81, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25481097

ABSTRACT

Membrane electrode assembly (MEA), a common arrangement used in direct methanol fuel cells, has been employed in a fed-batch mode microbial fuel cell (MFC), using mixed microbial population. This modification has been done for analyzing the prospect of obtaining increased power productivity. In addition, the electrodes have also been configured for the purpose of better current collection. Use of MEA as a replacement of the conventionally used 'separate membrane and electrode' arrangement has evidently resulted in reducing one of the limiting factors for higher power production in MFC, that is, its internal resistance. Open circuit potentials of more than 1 volt have been obtained for two MFC setups: (a) one consisting of an MEA and (b) the other having electrodes situated 2 cm apart from each other, but having better current collectors than the first setup. Power densities of 2212.57 mW m(-2) and 1098.29 mW m(-2) have been obtained at corresponding current densities of 5028.57 mA m(-2) and 3542.86 mA m(-2), respectively. The potential and power obtained for the MFC consisting of an MEA is quite significant compared to the other systems employed in this study.


Subject(s)
Bioelectric Energy Sources , Membranes, Artificial , Bacteria/ultrastructure , Biological Oxygen Demand Analysis , Dielectric Spectroscopy , Electricity , Electrochemical Techniques , Electrodes , Time Factors
9.
Enzyme Microb Technol ; 53(5): 339-44, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24034433

ABSTRACT

In this study, a bacterial strain, Lysinibacillus sphaericus which is relatively new in the vast list of biocatalysts known to produce electricity has been tested for its potential in power production. It is cited from the literature that the organism is deficient in some sugar or polysaccharide processing enzymes and thus is tested for its ability to utilize substrates mainly rich in protein components like beef extract and with successive production of electricity. The particular species has been found to generate a maximum power density of 85mW/m(2) and current density of ≈270mA/m(2) using graphite felt as electrode. The maximum Open Circuit Voltage and current has been noted as 0.7Vand 0.8mA during these operational cycles. Cyclic voltammetry studies indicate the presence of some electroactive compounds which can facilitate electron transfer from bacteria to electrode. The number of electrogens able to generate electricity in mediator free conditions are few, and the study introduces more divergence to that population. Substrate specificity and electricity generation efficacy of the strain in treating wastewater, specially rich in protein content has been reported in the study. As the species has been found to be efficient in utilizing proteinaceous material, the technique can be useful to treat specific type of wastewaters like wastewater from slaughterhouses or from meat packaging industry. Treating them in a more economical way which generates electricity as a outcome must be preferred over the conventional aerobic treatments. Emphasizing on substrate specificity, the study introduces this novel Lysinibacillus strain as a potent biocatalyst and its sustainable role in MFC application for bioenergy generation.


Subject(s)
Bacillaceae/metabolism , Bioelectric Energy Sources/microbiology , Bacillaceae/genetics , Bacillaceae/growth & development , Biofilms , Biological Oxygen Demand Analysis , Biotechnology , Microscopy, Electron, Scanning , Proteins/metabolism , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...