Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cell Biochem ; 427(1-2): 111-122, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28013477

ABSTRACT

Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.


Subject(s)
Catechin , Enzyme Precursors , Gelatinases , Matrix Metalloproteinase 2 , Molecular Docking Simulation , Protease Inhibitors , Tea/chemistry , Animals , Catechin/chemistry , Catechin/pharmacology , Cattle , Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Gelatinases/antagonists & inhibitors , Gelatinases/chemistry , Gelatinases/metabolism , Humans , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 2/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
2.
PLoS One ; 11(10): e0164970, 2016.
Article in English | MEDLINE | ID: mdl-27764212

ABSTRACT

Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.


Subject(s)
Cathepsin L/metabolism , Salivary Cystatins/chemistry , Salivary Cystatins/metabolism , Conserved Sequence , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Stability , Thermodynamics
3.
Biomed Pharmacother ; 84: 340-347, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27668533

ABSTRACT

Green tea polyphenolic catechins have been shown to prevent various types of diseases such as pulmonary hypertension (PAH), cancer and cardiac and neurological disorders. Matrix metalloproteinases (MMPs) play an important role in the development of PAH. The present study demonstrated that among the four green tea catechins (EGCG, ECG, EC and EGC), EGCG and ECG inhibit pro-/active MMP-9 activities in pulmonary artery smooth muscle cell culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-9 with the green tea catechins by computational methods. In silico molecular docking analysis revealed a strong interaction between pro-/active MMP-9 and EGCG/ECG, and galloyl group appears to be responsible for this enhanced interaction. The molecular docking studies corroborate our experimental observation that EGCG and ECG are mainly active in preventing both the proMMP-9 and MMP-9 activities.


Subject(s)
Catechin/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Molecular Docking Simulation , Tea/chemistry , Animals , Binding Sites , Catechin/chemistry , Cattle , Cells, Cultured , Humans , Ligands , Matrix Metalloproteinase Inhibitors/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
4.
Oncotarget ; 6(42): 44758-80, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26556872

ABSTRACT

Aberrant expression of miRNAs, cytokines and chemokines are involved in pathogenesis of colon cancer. However, the expression of p53 mediated miRNAs, cyto- and chemokines after radiation and SN38 treatment in colon cancer remains elusive. Here, human colon cancer cells, HCT116 with wild-type, heterozygous and a functionally null p53, were treated by radiation and SN38. The expression of 384 miRNAs was determined by using the TaqMan® miRNA array, and the expression of cyto- and chemokines was analyzed by Meso-Scale-Discovery instrument. Up- or down-regulations of miRNAs after radiation and SN38 treatments were largely dependent on p53 status of the cells. Cytokines, IL-6, TNF-α, IL-1ß, Il-4, IL-10, VEGF, and chemokines, IL-8, MIP-1α were increased, and IFN-γ expression was decreased after radiation, whereas, IL-6, IFN-γ, TNF-α, IL-1ß, Il-4, IL-10, IL-8 were decreased, and VEGF and MIP-1α were increased after SN38 treatment. Bioinformatic analysis pointed out that the highly up-regulated miRNAs, let-7f-5p, miR-455-3p, miR-98, miR-155-5p and the down-regulated miRNAs, miR-1, miR-127-5p, miR-142-5p, miR-202-5p were associated with colon cancer pathways and correlated with cyto- or chemokine expression. These miRNAs have the potential for use in colon cancer therapy as they are related to p53, pro- or anti-inflammatory cyto- or chemokines after the radiation and SN38 treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/analogs & derivatives , Chemokines/metabolism , Chemoradiotherapy , Colonic Neoplasms/therapy , Cytokines/metabolism , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Camptothecin/pharmacology , Chemokines/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Computational Biology , Cytokines/genetics , Databases, Genetic , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , Heterozygote , Humans , Inhibitory Concentration 50 , Irinotecan , MicroRNAs/genetics , Mutation , Radiation Dosage , Signal Transduction , Time Factors , Transfection , Tumor Suppressor Protein p53/genetics
5.
Anticancer Agents Med Chem ; 15(4): 475-83, 2015.
Article in English | MEDLINE | ID: mdl-25634447

ABSTRACT

The chemotherapeutic agent vincristine, used for treatment of acute lymphoblastic leukemia is metabolized preferentially by polymorphic cytochrome P450 3A5 (CYP3A5) with higher clearance rate than cytochrome P450 3A4 (CYP3A4). As a result, CYP3A5 expressers have a reduced amount of vincristine-induced peripheral neuropathy than non-expressers. We modeled the structure of CYP3A5 and its interaction with vincristine, compared with CYP3A4-vincristine complex using molecular docking and simulation studies. This relative study helped us to understand the molecular mechanisms behind the interaction at the atomic level through interaction energy, binding free energy, hydrogen bond and solvent accessible surface area analysis - giving an insight into the binding mode and the main residues involved in this particular interaction. Our results show that the interacting groups get closer in CYP3A5-vincristine complex due to different orientation of vincristine. This leads to higher binding affinity of vincristine towards CYP3A5 compared to CYP3A4 and explains the preferential metabolism of vincristine by CYP3A5. We believe that, the results of the current study will be helpful for future studies on structure-based drug design in this area.


Subject(s)
Antineoplastic Agents/chemistry , Cytochrome P-450 CYP3A/chemistry , Vincristine/chemistry , Amino Acid Sequence , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid
6.
J Biomol Struct Dyn ; 33(6): 1198-210, 2015.
Article in English | MEDLINE | ID: mdl-25011618

ABSTRACT

In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any "drug like" molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Models, Molecular , Plasmodium/enzymology , Protozoan Proteins/chemistry , Amino Acid Sequence , Antimalarials/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Hydrogen Bonding , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Stability , Protozoan Proteins/antagonists & inhibitors , Sequence Alignment , Structure-Activity Relationship
7.
PLoS One ; 9(5): e98317, 2014.
Article in English | MEDLINE | ID: mdl-24858921

ABSTRACT

BACKGROUND: Tafazzin (TAZ), a transmembrane protein contributes in mitochondrial structural and functional modifications through cardiolipin remodeling. TAZ mutations are associated with several diseases, but studies on the role of TAZ protein in carcinogenesis and radiotherapy (RT) response is lacking. Therefore we investigated the TAZ expression in rectal cancer, and its correlation with RT, clinicopathological and biological variables in the patients participating in a clinical trial of preoperative RT. METHODS: 140 rectal cancer patients were included in this study, of which 65 received RT before surgery and the rest underwent surgery alone. TAZ expression was determined by immunohistochemistry in primary cancer, distant, adjacent normal mucosa and lymph node metastasis. In-silico protein-protein interaction analysis was performed to study the predictive functional interaction of TAZ with other oncoproteins. RESULTS: TAZ showed stronger expression in primary cancer and lymph node metastasis compared to distant or adjacent normal mucosa in both non-RT and RT patients. Strong TAZ expression was significantly higher in stages I-III and non-mucinious cancer of non-RT patients. In RT patients, strong TAZ expression in biopsy was related to distant recurrence, independent of gender, age, stages and grade (p = 0.043, HR, 6.160, 95% CI, 1.063-35.704). In silico protein-protein interaction study demonstrated that TAZ was positively related to oncoproteins, Livin, MAC30 and FXYD-3. CONCLUSIONS: Strong expression of TAZ protein seems to be related to rectal cancer development and RT response, it can be a predictive biomarker of distant recurrence in patients with preoperative RT.


Subject(s)
Biomarkers, Tumor/biosynthesis , Gene Expression Regulation, Neoplastic , Rectal Neoplasms/radiotherapy , Transcription Factors/biosynthesis , Acyltransferases , Adaptor Proteins, Signal Transducing/biosynthesis , Adult , Aged , Female , Humans , Immunohistochemistry , Inhibitor of Apoptosis Proteins/biosynthesis , Lymphatic Metastasis , Male , Membrane Proteins/biosynthesis , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Staging , Rectal Neoplasms/pathology
8.
Protein Pept Lett ; 21(6): 564-71, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24364870

ABSTRACT

E. coli small heat shock proteins IbpA and IbpB (inclusion body binding proteins A and B) are known to act as holding chaperones on denaturing, aggregate-prone proteins. But, there is no clear understanding about which of the IbpA and IbpB has more holdase activity and how the holdase activity of one was influenced by the presence of the other. This study was conducted to resolve the questions, using some uncommon physical techniques like dynamic light scattering, micro-viscometry and atomic force microscopy in addition to the common techniques of spectrophotometry and spectrofluorimetry. The holdase activity was investigated on the heat-denatured L-lactate dehydrogenase (LDH) of rabbit muscle. LDH was found to be deactivated completely without any aggregation at 52°C and with transient aggregation at 60°C; molecular dynamics simulation also revealed that at 52°C, denaturation occurred only at the active site of LDH. When LDH was allowed to be deactivated in the presence of IbpA, IbpB or (IbpA + IbpB), partial inhibition of i) denaturation at 52°C and ii) aggregation at 60°C were observed. The results further demonstrated that the holdase activity of IbpB was higher than that of IbpA and their combined effect was higher than their individual one.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heat-Shock Proteins/metabolism , L-Lactate Dehydrogenase/metabolism , Animals , Hot Temperature , L-Lactate Dehydrogenase/chemistry , Molecular Dynamics Simulation , Protein Aggregates , Protein Denaturation , Rabbits
9.
J Biomol Struct Dyn ; 31(6): 649-64, 2013.
Article in English | MEDLINE | ID: mdl-22881286

ABSTRACT

Cystatins are extensively studied cysteine protease inhibitors, found in wide range of organisms with highly conserved structural folds. S-type of cystatins is well known for their abundance in saliva, high selectivity and poorer activity towards host cysteine proteases in comparison to their immediate ancestor cystatin C. Despite more than 90% sequence similarity, the members of this group show highly dissimilar binding affinity towards papain. Cystatin M/E is a potent inhibitor of legumain and papain like cysteine proteases and recognized for its involvement in skin barrier formation and potential role as a tumor suppressor gene. However, the structures of these proteins and their complexes with papain or legumain are still unknown. In the present study, we have employed computational methods to get insight into the interactions between papain and cystatins. Three-dimensional structures of the cystatins are generated by homology modelling, refined with molecular dynamics simulation, validated through numerous web servers and finally complexed with papain using ZDOCK algorithm in Discovery Studio. A high degree of shape complementarity is observed within the complexes, stabilized by numerous hydrogen bonds (HB) and hydrophobic interactions. Using interaction energy, HB and solvent accessible surface area analyses, we have identified a series of key residues that may be involved in papain-cystatin interaction. Differential approaches of cystatins towards papain are also noticed which are possibly responsible for diverse inhibitory activity within the group. These findings will improve our understanding of fundamental inhibitory mechanisms of cystatin and provide clues for further research.


Subject(s)
Molecular Dynamics Simulation , Papain/chemistry , Salivary Cystatins/chemistry , Salivary Cystatins/metabolism , Amino Acid Sequence , Humans , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Papain/metabolism , Protein Conformation , Sequence Alignment
10.
Bioinformation ; 8(20): 1000-2, 2012.
Article in English | MEDLINE | ID: mdl-23275696

ABSTRACT

UNLABELLED: Dehydrogenase enzymes are almost inevitable for metabolic processes. Shortage or malfunctioning of dehydrogenases often leads to several acute diseases like cancers, retinal diseases, diabetes mellitus, Alzheimer, hepatitis B & C etc. With advancement in modern-day research, huge amount of sequential, structural and functional data are generated everyday and widens the gap between structural attributes and its functional understanding. DB Dehydrogenase is an effort to relate the functionalities of dehydrogenase with its structures. It is a completely web-based structural database, covering almost all dehydrogenases [~150 enzyme classes, ~1200 entries from ~160 organisms] whose structures are known. It is created by extracting and integrating various online resources to provide the true and reliable data and implemented by MySQL relational database through user friendly web interfaces using CGI Perl. Flexible search options are there for data extraction and exploration. To summarize, sequence, structure, function of all dehydrogenases in one place along with the necessary option of cross-referencing; this database will be utile for researchers to carry out further work in this field. AVAILABILITY: The database is available for free at http://www.bifku.in/DBD/

SELECTION OF CITATIONS
SEARCH DETAIL
...