Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38052940

ABSTRACT

BACKGROUND: The application of wastewater-based epidemiology to track the outbreak and prevalence of coronavirus disease (COVID-19) in communities has been tested and validated by several researchers across the globe. However, the RNA-based surveillance has its inherent limitations and uncertainties. OBJECTIVE: This study aims to complement the ongoing wastewater surveillance efforts by analyzing other chemical biomarkers in wastewater to help assess community response (hospitalization and treatment) during the pandemic (2020-2021). METHODS: Wastewater samples (n = 183) were collected from the largest wastewater treatment facility in Suffolk County, NY, USA and analyzed for COVID-19 treatment drugs (remdesivir, chloroquine, and hydroxychloroquine (HCQ)) and their human metabolites. We additionally monitored 26 pharmaceuticals including common over-the-counter (OTC) drugs. Lastly, we developed a Bayesian model that uses viral RNA, COVID-19 treatment drugs, and pharmaceuticals data to predict the confirmed COVID-19 cases within the catchment area. RESULTS: The viral RNA levels in wastewater tracked the actual COVID-19 case numbers well as expected. COVID-19 treatment drugs were detected with varying frequency (9-100%) partly due to their instability in wastewater. We observed a significant correlation (R = 0.30, p < 0.01) between the SARS-CoV-2 genes and desethylhydroxychloroquine (DHCQ, metabolite of HCQ). Remdesivir levels peaked immediately after the Emergency Use Authorization approved by the FDA. Although, 13 out of 26 pharmaceuticals assessed were consistently detected (DF = 100%, n = 111), only acetaminophen was significantly correlated with viral loads, especially when the Omicron variant was dominant. The Bayesian models were capable of reproducing the temporal trend of the confirmed cases. IMPACT: In this study, for the first time, we measured COVID-19 treatment and pharmaceutical drugs and their metabolites in wastewater to complement ongoing COVID-19 viral RNA surveillance efforts. Our results highlighted that, although the COVID-19 treatment drugs were not very stable in wastewater, their detection matched with usage trends in the community. Acetaminophen, an OTC drug, was significantly correlated with viral loads and confirmed cases, especially when the Omicron variant was dominant. A Bayesian model was developed which could predict COVID-19 cases more accurately when incorporating other drugs data along with viral RNA levels in wastewater.

2.
Front Microbiol ; 13: 955032, 2022.
Article in English | MEDLINE | ID: mdl-36160233

ABSTRACT

While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.

3.
Environ Pollut ; 288: 117774, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34274645

ABSTRACT

Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Eukaryota , Petroleum/toxicity , Petroleum Pollution/analysis , Seawater , Surface-Active Agents , Transcriptome , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Harmful Algae ; 104: 102031, 2021 04.
Article in English | MEDLINE | ID: mdl-34023078

ABSTRACT

Dinophysis spp. are mixotrophs that are dependent on specific prey, but are also potentially reliant on dissolved nutrients. The extent to which Dinophysis relies on exogenous N and the specific biochemical pathways important for supporting its autotrophic and heterotrophic growth are unknown. Here, the nutritional ecology of Dinophysis was explored using two approaches: 1) 15N tracer experiments were conducted to quantify the concentration-dependent uptake rates and associated kinetics of various N compounds (nitrate, ammonium, urea) of Dinophysis cultures and 2) the transcriptomic responses of Dinophysis cultures grown with multiple combinations of prey and nutrients were assessed via dinoflagellate spliced leader-based transcriptome profiling. Of the N compounds examined, ammonium had the highest Vmax and affinity coefficient, and lowest Ks for both pre-starved and pre-fed cultures, collectively demonstrating the preference of Dinophysis for this N source while little-to-no nitrate uptake was observed. During the transcriptome experiments, Dinophysis grown with nitrate and without prey had the largest number of genes with lower transcript abundances, did not increase abundance of transcripts associated with nitrate/nitrite uptake or reduction, and displayed no cellular growth, suggesting D. acuminata is not capable of growing on nitrate. When offered prey, the transcriptomic response of Dinophysis included the production of phagolysosomes, enzymes involved in protein and lipid catabolism, and N acquisition through amino acid degradation pathways. Compared with cultures only offered ammonium or prey, cultures offered both ammonium and prey had the largest number of genes with increased transcript abundances, the highest growth rate, and the unique activation of multiple pathways involved in cellular catabolism, further evidencing the ability of Dinophysis to grow optimally as a mixotroph. Collectively, this study evidences the key role ammonium plays in the mixotrophic growth of Dinophysis and reveals the precise biochemical pathways that facilitate its mixotrophic growth.


Subject(s)
Ammonium Compounds , Dinoflagellida , Dinoflagellida/genetics , Nitrates , Transcriptome
6.
Sci Rep ; 10(1): 9449, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523048

ABSTRACT

Diatoms are an ecologically fundamental and highly diverse group of algae, dominating marine primary production in both open-water and coastal communities. The diatoms include both centric species, which may have radial or polar symmetry, and the pennates, which include raphid and araphid species and arose within the centric lineage. Here, we use combined microscopic and molecular information to reclassify a diatom strain CCMP470, previously annotated as a radial centric species related to Leptocylindrus danicus, as an araphid pennate species in the staurosiroid lineage, within the genus Plagiostriata. CCMP470 shares key ultrastructural features with Plagiostriata taxa, such as the presence of a sternum with parallel striae, and the presence of a highly reduced labiate process on its valve; and this evolutionary position is robustly supported by multigene phylogenetic analysis. We additionally present a draft genome of CCMP470, which is the first genome available for a staurosiroid lineage. 270 Pfams (19%) found in the CCMP470 genome are not known in other diatom genomes, which otherwise does not hold big novelties compared to genomes of non-staurosiroid diatoms. Notably, our DNA library contains the genome of a bacterium within the Rhodobacterales, an alpha-proteobacterial lineage known frequently to associate with algae. We demonstrate the presence of commensal alpha-proteobacterial sequences in other published algal genome and transcriptome datasets, which may indicate widespread and persistent co-occurrence.


Subject(s)
Diatoms/classification , Diatoms/genetics , Gene Expression Profiling/methods , Biological Evolution , Evolution, Molecular , Genome , Phylogeny , Transcriptome/genetics
7.
Mar Pollut Bull ; 151: 110798, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056593

ABSTRACT

Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.


Subject(s)
Petroleum , Phytoplankton/physiology , Water Pollutants, Chemical , Diatoms , Dinoflagellida , Ribosomes
8.
BMC Genomics ; 18(1): 813, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29061117

ABSTRACT

BACKGROUND: Flagella have been lost in the vegetative phase of the diatom life cycle, but they are still present in male gametes of centric species, thereby representing a hallmark of sexual reproduction. This process, besides maintaining and creating new genetic diversity, in diatoms is also fundamental to restore the maximum cell size following its reduction during vegetative division. Nevertheless, sexual reproduction has been demonstrated in a limited number of diatom species, while our understanding of its different phases and of their genetic control is scarce. RESULTS: In the transcriptome of Leptocylindrus danicus, a centric diatom widespread in the world's seas, we identified 22 transcripts related to the flagella development and confirmed synchronous overexpression of 6 flagellum-related genes during the male gamete formation process. These transcripts were mostly absent in the closely related species L. aporus, which does not have sexual reproduction. Among the 22 transcripts, L. danicus showed proteins that belong to the Intra Flagellar Transport (IFT) subcomplex B as well as IFT-A proteins, the latter previously thought to be absent in diatoms. The presence of flagellum-related proteins was also traced in the transcriptomes of several other centric species. Finally, phylogenetic reconstruction of the IFT172 and IFT88 proteins showed that their sequences are conserved across protist species and have evolved similarly to other phylogenetic marker genes. CONCLUSION: Our analysis describes for the first time the diatom flagellar gene set, which appears to be more complete and functional than previously reported based on the genome sequence of the model centric diatom, Thalassiosira pseudonana. This first recognition of the whole set of diatom flagellar genes and of their activation pattern paves the way to a wider recognition of the relevance of sexual reproduction in individual species and in the natural environment.


Subject(s)
Diatoms/genetics , Diatoms/physiology , Flagella/genetics , Proteins/genetics , Diatoms/cytology , Gene Expression Regulation , Genetic Variation , Phylogeny , Reproduction , Stress, Physiological , Transcriptome
9.
PLoS One ; 9(8): e103810, 2014.
Article in English | MEDLINE | ID: mdl-25133638

ABSTRACT

BACKGROUND: Continuous efforts to estimate actual diversity and to trace the species distribution and ranges in the natural environments have gone in equal pace with advancements of the technologies in the study of microbial species diversity from microscopic observations to DNA-based barcoding. DNA metabarcoding based on Next Generation Sequencing (NGS) constitutes the latest advancement in these efforts. Here we use NGS data from different sites to investigate the geographic range of six species of the diatom family Leptocylindraceae and to identify possible new taxa within the family. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the V4 and V9 regions of the nuclear-encoded SSU rDNA gene region in the NGS database of the European ERA-Biodiversa project BioMarKs, collected in plankton and sediments at six coastal sites in European coastal waters, as well as environmental sequences from the NCBI database. All species known in the family Leptocylindraceae were detected in both datasets, but the much larger Illumina V9 dataset showed a higher species coverage at the various sites than the 454 V4 dataset. Sequences identical or similar to the references of Leptocylindrus aporus, L. convexus, L. danicus/hargravesii and Tenuicylindrus belgicus were found in the Mediterranean Sea, North Atlantic Ocean and Black Sea as well as at locations outside Europe. Instead, sequences identical or close to that of L. minimus were found in the North Atlantic Ocean and the Black Sea but not in the Mediterranean Sea, while sequences belonging to a yet undescribed taxon were encountered only in Oslo Fjord and Baffin Bay. CONCLUSIONS/SIGNIFICANCE: Identification of Leptocylindraceae species in NGS datasets has expanded our knowledge of the species biogeographic distribution and of the overall diversity of this diatom family. Individual species appear to be widespread, but not all of them are found everywhere. Despite the sequencing depth allowed by NGS and the wide geographic area covered by this study, the diversity of this ancient diatom family appears to be low, at least at the level of the marker used in this study.


Subject(s)
Diatoms/genetics , DNA Barcoding, Taxonomic , DNA, Ribosomal/genetics , Diatoms/classification , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Seawater
10.
Mar Drugs ; 12(1): 368-84, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24445306

ABSTRACT

Marine planktonic organisms, such as diatoms, are prospective sources of novel bioactive metabolites. Oxygenated derivatives of fatty acids, generally referred to as oxylipins, in diatoms comprise a highly diverse and complex family of secondary metabolites. These molecules have recently been implicated in several biological processes including intra- and inter-cellular signaling as well as in defense against biotic stressors and grazers. Here, we analyze the production and diversity of C20 and C22 non-volatile oxylipins in five species of the family Leptocylindraceae, which constitute a basal clade in the diatom phylogeny. We report the presence of species-specific lipoxygenase activity and oxylipin patterns, providing the first demonstration of enzymatic production of docosahexaenoic acid derivatives in marine diatoms. The differences observed in lipoxygenase pathways among the species investigated broadly reflected the relationships observed with phylogenetic markers, thus providing functional support to the taxonomic diversity of the individual species.


Subject(s)
Diatoms/chemistry , Docosahexaenoic Acids/chemistry , Oxylipins/chemistry , DNA/genetics , Diatoms/genetics , Likelihood Functions , Lipoxygenases/metabolism , Molecular Conformation , Oxylipins/isolation & purification , Phylogeny , Proteins/chemistry , Signal Transduction/physiology , Species Specificity , Stereoisomerism
11.
J Phycol ; 49(5): 917-36, 2013 Oct.
Article in English | MEDLINE | ID: mdl-27007316

ABSTRACT

Centric diatoms of the genus Leptocylindrus are common in the marine plankton worldwide. Only two species, L. danicus Cleve and L. minimus Gran, so far clearly belong to this genus, whose diversity has not been fully investigated. We investigated frustule and spore morphology as well as three nuclear- and three plastid-encoded markers of 85 Leptocylindrus strains from the Gulf of Naples, and one from the Atlantic US. The strains grouped into five molecularly distinct species with different levels of morphological differentiation. Two species matched the description of L. danicus and produced similar spores but differed in morphometric characters and sub-central pore position, supporting the description of L. hargravesii Nanjappa and Zingone as a distinct species. Leptocylindrus danicus var. apora French III and Hargraves, lacking a sub-central pore and not forming spores, was raised to the species level as L. aporus (French III and Hargraves) Nanjappa and Zingone. A fourth species with convex valves was described as L. convexus Nanjappa and Zingone. The fifth species matched the description of L. belgicus Meunier, considered as synonym of L. minimus. However, ultrastructural differences from all other Leptocylindrus supported the erection of the genus Tenuicylindrus Nanjappa and Zingone with T. belgicus (Meunier) Nanjappa and Zingone as type species. None of the sequences matched the L. minimus sequence in GenBank. The species analyzed showed different or partially overlapping seasonal distributions. Despite the addition of the new taxa, the ancient diatom lineage of the Leptocylindraceae shows a relative species poorness and considerable morphological stasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...