Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neurobiol Stress ; 15: 100376, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34401412

ABSTRACT

The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness.

2.
Pediatr Res ; 85(4): 574-581, 2019 03.
Article in English | MEDLINE | ID: mdl-30675019

ABSTRACT

BACKGROUND: Gut microbiota plays an important role during early development via bidirectional gut-brain signaling. Catecholamines provide a survival advantage allowing adaptation to common postnatal stressors. We aimed to explore the potential link between gut microbiota/gut-derived metabolites and sympathoadrenal stress responsivity. METHODS: The effect of insulin-induced hypoglycemia was compared in mice with (control, adapted control) and without microbiome (germ-free, GF). Counter-regulatory hormones were analyzed in urine and plasma. Adrenal gene expression levels were evaluated and correlated to cecal short chain fatty acids (SCFA) content. RESULTS: There was a significant association between absent microbiota/SCFA and epinephrine levels at baseline and after stress. Corticosterone (hypothalamic-pituitary-adrenal axis) and glucagon release (parasympathetic signaling) were similar in all groups. Hypoglycemia-induced c-Fos (marker of trans-synaptic neuronal activation) in both conditions. Delayed increases in adrenal tyrosine hydroxylase and neuropeptide Y messenger RNA were observed in GF mice. Transcriptome analysis provided insight into underlying mechanisms for attenuated epinephrine production and release. CONCLUSION: Lack of microbiome selectively impaired adrenal catecholamine responses to hypoglycemia. We speculate that absent/delayed acquisition of flora (e.g., after antibiotic exposure) may compromise sympathoadrenal stress responsivity. Conversely, controlled manipulation of the intestinal microflora may provide a novel therapeutic opportunity to improve survival and overall health in preterm neonates.


Subject(s)
Adrenal Glands/physiopathology , Gastrointestinal Microbiome , Hypoglycemia/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Corticosterone/blood , Epinephrine/urine , Glucagon/blood , Humans , Hypoglycemia/microbiology , Infant, Newborn , Mice , Mice, Inbred C57BL
4.
PLoS One ; 12(2): e0172789, 2017.
Article in English | MEDLINE | ID: mdl-28234964

ABSTRACT

Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivation, a phenomenon known as hypoglycemia associated autonomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation are not completely understood. We hypothesized that both neuronal (excessive cholinergic signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors contribute to the impaired epinephrine production and release in HAAF. To gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia, we utilized a global gene expression profiling approach. We characterized the transcriptomes during recurrent (defective counter-regulation model) and acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a set of unique genes that are activated only at specific time points after recurrent hypoglycemia were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network indicated activation of the unfolded protein response. Furthermore, at least three additional pathways/interaction networks altered in the adrenal medulla following recurrent hypoglycemia were identified, which may contribute to the impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proenkephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregulation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the pleiotropic effects of the unfolded protein response in different organs, involved in maintaining glucose homeostasis, these findings uncover broader general mechanisms that arise following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the magnitude of HAAF syndrome.


Subject(s)
Diabetes Mellitus/genetics , Gene Expression Regulation/genetics , Hypoglycemia/genetics , Insulin/metabolism , Animals , Autonomic Nervous System Diseases/physiopathology , Blood Glucose , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Epinephrine/genetics , Epinephrine/metabolism , Gene Expression Profiling/methods , Genome , Glucose/metabolism , Humans , Hypoglycemia/pathology , Rats , Unfolded Protein Response/genetics
5.
Physiol Rep ; 3(2)2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25713330

ABSTRACT

Acute metabolic stress such as insulin-induced hypoglycemia triggers a counterregulatory response during which the release of catecholamines (epinephrine), the activation of tyrosine hydroxylase (TH) enzyme and subsequent compensatory catecholamine biosynthesis occur in the adrenal medulla. However, recurrent exposure to hypoglycemia (RH), a consequence of tight glycemic control in individuals with type 1 and type 2 diabetes compromises this physiological response. The molecular mechanisms underlying the maladaptive response to repeated glucose deprivation are incompletely understood. We hypothesize that impaired epinephrine release following RH reflects altered regulation of adrenal catecholamine biosynthesis. To test this hypothesis, we compared the effect of single daily (RH) and twice-daily episodes of insulin-induced hypoglycemia (2RH) on adrenal epinephrine release and production in normal rats. Control animals received saline injections under similar conditions (RS and 2RS, respectively). Following 3 days of treatment, we assessed the counterregulatory hormonal responses during a hypoglycemic clamp. Changes in adrenal TH gene expression were also analyzed. The counterregulatory responses, relative TH transcription and TH mRNA levels and Ser40-TH phosphorylation (marker for enzyme activation) were induced to a similar extent in RS, 2RS, and RH groups. In contrast, epinephrine and glucagon responses were attenuated in the 2RH group and this was associated with a limited elevation of adrenal TH mRNA, rapid inactivation of TH enzyme and no significant changes in TH protein. Our results suggest that novel posttranscriptional mechanisms controlling TH mRNA and activated TH enzyme turnover contribute to the impaired epinephrine responses and may provide new therapeutic targets to prevent HAAF.

6.
PLoS One ; 9(8): e103740, 2014.
Article in English | MEDLINE | ID: mdl-25170769

ABSTRACT

Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as increased levels of SCFA's can epigenetically modulate cell function further supporting their role as environmental contributors to ASD.


Subject(s)
Butyric Acid/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Enterobacteriaceae/physiology , Host-Pathogen Interactions , PC12 Cells/microbiology , Propionates/metabolism , Animals , Child Development Disorders, Pervasive/microbiology , Gene Expression Regulation , Gene Regulatory Networks , PC12 Cells/metabolism , Rats , Synaptic Transmission , Transcriptional Activation , Tyrosine 3-Monooxygenase/genetics
7.
Am J Physiol Endocrinol Metab ; 307(7): E580-8, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25117409

ABSTRACT

Recurrent exposure to hypoglycemia can impair the normal counterregulatory hormonal responses that guard against hypoglycemia, leading to hypoglycemia unawareness. This pathological condition known as hypoglycemia-associated autonomic failure (HAAF) is the main adverse consequence that prevents individuals with type 1 diabetes mellitus from attaining the long-term health benefits of tight glycemic control. The underlying molecular mechanisms responsible for the progressive loss of the epinephrine response to subsequent bouts of hypoglycemia, a hallmark sign of HAAF, are largely unknown. Normally, hypoglycemia triggers both the release and biosynthesis of epinephrine through activation of nicotinic acetylcholine receptors (nAChR) on the adrenal glands. We hypothesize that excessive cholinergic stimulation may contribute to impaired counterregulation. Here, we tested whether administration of the nAChR partial agonist cytisine to reduce postganglionic synaptic activity can preserve the counterregulatory hormone responses in an animal model of HAAF. Compared with nicotine, cytisine has limited efficacy to activate nAChRs and stimulate epinephrine release and synthesis. We evaluated adrenal catecholamine production and secretion in nondiabetic rats subjected to two daily episodes of hypoglycemia for 3 days, followed by a hyperinsulinemic hypoglycemic clamp on day 4. Recurrent hypoglycemia decreased epinephrine responses, and this was associated with suppressed TH mRNA induction (a measure of adrenal catecholamine synthetic capacity). Treatment with cytisine improved glucagon responses as well as epinephrine release and production in recurrently hypoglycemic animals. These data suggest that pharmacological manipulation of ganglionic nAChRs may be promising as a translational adjunctive therapy to avoid HAAF in type 1 diabetes mellitus.


Subject(s)
Adrenal Glands/drug effects , Alkaloids/pharmacology , Autonomic Nervous System/drug effects , Blood Glucose/drug effects , Epinephrine/metabolism , Hypoglycemia/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic , Tyrosine 3-Monooxygenase/drug effects , Adrenal Glands/metabolism , Animals , Autonomic Nervous System/metabolism , Azocines/pharmacology , Blood Glucose/metabolism , Disease Models, Animal , Epinephrine/biosynthesis , Gene Expression Profiling , Glucose Clamp Technique , Male , Quinolizines/pharmacology , RNA, Messenger , Rats , Rats, Sprague-Dawley , Recurrence , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
8.
Brain Res ; 1247: 1-10, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-18976638

ABSTRACT

The spectrum of neurological conditions and psychiatric disorders affected by valproic acid (VPA) ranges from control of seizure and mood disorders to migraine, neuropathic pain, and even congenital malformations and autism. While widely used clinically, the mechanism(s) of action of VPA is not completely understood. Emerging evidence indicates that brain noradrenergic systems contribute to the symptoms of mood disorders and may involve regulation of tyrosine hydroxylase (TH) expression, the rate-limiting enzyme in the biosynthesis of dopamine, norepinephrine and epinephrine. We previously showed that the structurally related short chain fatty acid sodium butyrate (SB) induces TH transcription and alters TH mRNA stability in PC12 cells. The present study was undertaken to determine whether the branched short chain fatty acid VPA could also regulate TH gene expression in vitro. Similar to SB, VPA induced TH transcription at all concentrations tested. VPA-stimulated transcription was significantly attenuated by introducing point mutations in either the canonical cAMP- or in the butyrate-response elements of the TH promoter; or by co-expression of dominant-negative forms of CREB. As with SB, increasing concentrations of VPA demonstrated opposing effects on TH mRNA and protein abundance: elevation of both at low (0.1 mM) but attenuation at concentrations higher than 0.5 mM. This concentration-dependence is consistent with a novel and previously unrecognized cellular/molecular drug regulatory step at the level of TH mRNA stability. Thus, the therapeutic efficacy of VPA might be related to its ability to regulate TH mRNA and protein levels, and thereby central catecholaminergic-dependent behavioral pathways.


Subject(s)
Brain/drug effects , Catecholamines/biosynthesis , Neurons/drug effects , Tyrosine 3-Monooxygenase/biosynthesis , Valproic Acid/pharmacology , Animals , Brain/enzymology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Neural Pathways/drug effects , Neural Pathways/enzymology , Neurons/enzymology , PC12 Cells , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Tyrosine 3-Monooxygenase/genetics
9.
Brain Res ; 1132(1): 42-50, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17174279

ABSTRACT

At physiologic concentrations, butyrate regulates the expression of individual genes involving at least three mechanisms: (i) through induction of cis- and trans-acting butyrate-dependent transcription factors for selected genes, (ii) by inhibition of histone deacetylation and attendant chromatin remodeling and (iii) by affecting turnover of mRNAs. Our previous work illustrated gradual accumulation of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis and the neuropeptide transmitter proenkephalin (ppEnk) in butyrate-differentiated PC12 cells (Nankova, B.B., Chua, J., Mishra, R., Kobasiuk, C.D., La Gamma, E.F. 2003. Nicotinic induction of preproenkephalin and tyrosine hydroxylase gene expression in butyrate-differentiated rat PC12 cells: a model for adaptation to gut-derived environmental signals. Pediatr. Res. 53, 113-118.). However, at higher physiological concentrations (6 mM), TH mRNA levels are significantly reduced while ppEnk mRNA transcripts remained elevated. These differential effects suggest suppression of endogenous TH gene transcription, targeted degradation of TH mRNA or both. By using nuclear run-on assays, we found that transcription increased for both endogenous TH and ppEnk genes, even at time points and concentrations when reduced steady-state levels of TH mRNA were observed. The reduction in TH mRNA was blocked by cycloheximide consistent with a protein-dependent mechanism. We also observed a dose-dependent accumulation of luciferase reporter molecules driven by TH promoter in transient transfection experiments, data that provide additional support for separate regulatory pathways. Significantly, butyrate-dependent decreases in TH mRNA were also reflected in a reduction in TH protein. Our results suggest a novel mode of regulation for TH by butyrate operating via both transcriptional and post-transcriptional mechanisms. We speculate that, depending on plasma concentrations of butyrate, this naturally occurring signaling molecule can function as an in vivo molecular switch to alter levels of TH mRNA, its protein and thus the biosynthesis of endogenous catecholamines.


Subject(s)
Butyrates/metabolism , Enkephalins/genetics , Fatty Acids, Volatile/physiology , RNA Stability/genetics , Transcription, Genetic/genetics , Tyrosine 3-Monooxygenase/genetics , Animals , Butyrates/pharmacology , Dose-Response Relationship, Drug , Enkephalins/biosynthesis , Fatty Acids, Volatile/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Nervous System/drug effects , Nervous System/metabolism , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Protein Synthesis Inhibitors/pharmacology , RNA Stability/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Tyrosine 3-Monooxygenase/biosynthesis , Up-Regulation/drug effects , Up-Regulation/genetics
10.
Brain Res ; 1107(1): 13-23, 2006 Aug 30.
Article in English | MEDLINE | ID: mdl-16854387

ABSTRACT

Butyrate modulates specific gene expression through various second-messenger signal transduction systems including activation of the PKA/cAMP pathway (Decastro, M., Nankova, B.B., Shah, P., Patel, P., Mally, P.V., Mishra, R., La Gamma, E.F., 2005. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway, Brain Res. Mol. Brain Res. 142 28-38; Mally, P., Mishra, R., Gandhi, S., Decastro, M.H., Nankova, B.B., Lagamma, E.F., 2004. Stereospecific regulation of tyrosine hydroxylase and proenkephalin genes by short-chain fatty acids in rat PC12 cells, Pediatr. Res. 55 847-854). In the current report, we provide additional evidence that exposure to butyrate causes a rapid activation of the MAP kinase pathway, associated with increased phosphorylation of CREB. Under these conditions, no changes in relative amounts of CREB protein were observed by Western blot. Pre-treatment with the MAPK specific inhibitor (U0126) or the adenylate cyclase inhibitor dideoxyadenosine (ddA) abolished the butyrate-induced: (i) accumulation of TH mRNA, (ii) the phosphorylation of ERK1/2 as well as (iii) CREB phosphorylation. PC12 cells transfected with a TH promoter-luciferase reporter gene showed a robust induction in response to butyrate that was significantly reduced after co-transfection of either of two dominant-negative CREB expression vectors. Nuclear run-on assays demonstrated that butyrate increases endogenous TH gene transcription. We conclude that the initial steps of butyrate-induced gene activation are mediated through the CREB/CREB family of transcription factors which are coupled to both the MAP kinase and cAMP-dependent second messenger systems. Our data delineate a molecular mechanism through which short chain fatty acid's, their related drug-congeners (e.g., valproate) or even diet-derived butyrate (from fermentation of carbohydrates in the gut) can in principle, modulate brain catecholaminergic systems by modifying TH gene expression, dopaminergic levels and the corresponding animal behavior. These molecular relationships also offer a plausible explanation of how the well-recognized clinical effects of ketogenic diets can alter human behavior via the same central mechanisms.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fatty Acids, Volatile/pharmacology , Gene Expression/drug effects , Tyrosine 3-Monooxygenase/metabolism , Analysis of Variance , Animals , Blotting, Northern/methods , Blotting, Western/methods , Butyrates/pharmacology , Cyclic AMP/pharmacology , Drug Interactions , Enkephalins/genetics , Enkephalins/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , PC12 Cells , Phosphorylation/drug effects , RNA, Messenger/metabolism , Rats , Signal Transduction/drug effects , Time Factors , Transfection/methods , Tyrosine 3-Monooxygenase/genetics
11.
Brain Res Mol Brain Res ; 142(1): 28-38, 2005 Dec 07.
Article in English | MEDLINE | ID: mdl-16219387

ABSTRACT

Multiple intracellular and extracellular regulatory factors affect transcription of the tyrosine hydroxylase (TH) gene encoding the rate-limiting enzyme in the biosynthesis of the neurotransmitters dopamine, norepinephrine and epinephrine. Short chain fatty acids like butyrate are known to alter TH gene expression, but the mechanism of action is unknown. In this report, transient transfection assays identified the proximal TH promoter to contain sufficient genetic information to confer butyrate responsiveness to a reporter gene. Deletion studies and gel shift analyses revealed that the promoter region spanning the cAMP response element is an absolute requirement for transcriptional activation by butyrate. The branched short chain fatty acid valproate is used for seizure control in humans. Significantly, it has a similar aliphatic structure to butyrate, and it was found to have similar effects on TH in PC12 cells. Site-directed mutagenesis indicated that the effects of both fatty acids were mediated through the canonical CRE. Butyrate treatment also resulted in CREB phosphorylation without changing CREB protein levels. The increased phosphorylation of CREB correlated with accumulation of TH mRNA. The adenylate cyclase inhibitor dideoxyadenosine blocked both CREB phosphorylation and accumulation of TH mRNA. The data are consistent with the conclusion that butyrate induces post-translational modifications of pre-existing CREB molecules in a cAMP/PKA-dependent manner to alter TH transcription. These results support the role of butyrate as a novel exogenous regulatory factor in TH gene expression. Our data delineate a molecular mechanism through which diet-derived environmental signals (e.g. butyrate) can modulate catecholaminergic systems by affecting TH gene transcription.


Subject(s)
Cyclic AMP/metabolism , Fatty Acids, Volatile/pharmacology , Gene Expression/drug effects , Signal Transduction/drug effects , Tyrosine 3-Monooxygenase/metabolism , Analysis of Variance , Animals , Blotting, Northern/methods , Blotting, Western/methods , Butyrates/pharmacology , Electrophoretic Mobility Shift Assay/methods , Enzyme Inhibitors/pharmacology , Luciferases/metabolism , Mutagenesis, Site-Directed/methods , PC12 Cells , Phosphorylation/drug effects , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/physiology , Rats , Signal Transduction/physiology , Time Factors , Transfection/methods , Tyrosine 3-Monooxygenase/genetics , Valproic Acid/pharmacology
12.
Brain Res Dev Brain Res ; 160(1): 53-62, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16165221

ABSTRACT

Butyrate is a diet-derived, gut fermentation product with an array of effects on cultured mammalian cells including inhibition of proliferation, induction of differentiation and regulation of gene expression. We showed that physiological concentrations of butyrate can regulate transcription of tyrosine hydroxylase (TH) and preproenkephalin (ppEnk) gene in PC12 cells. In promoter deletion studies, electrophoretic mobility shift assays and by site-directed mutagenesis, we identified a novel butyrate response element (BRE) in the 5' upstream region of the rat TH gene, homologous to the previously mapped motif in the ppEnk promoter. No such enhancers were found in DBH or PNMT promoters, and both catecholamine system-related gene promoters were unaffected by butyrate. The BRE motif interacts with nuclear proteins in a sequence-specific manner, shows binding potentiation in butyrate-differentiated PC12 cells and bound protein(s) are competed away with TH-CRE oligonucleotides or by the addition of CREB-specific antibodies, suggesting involvement of CREB or CREB-related transcription factors. Moreover, single point mutation in the distal BRE abolished binding of transcription factors and reduced the response to butyrate in transient transfection studies. The canonical CRE motif of the TH promoter was also found necessary for transcriptional activation of the TH gene by butyrate. Our data identified a novel functional element in the promoter of both the TH and ppEnk genes mediating transcriptional responses to butyrate. Dietary butyrate may have an extended role in the control of catecholamine and endogenous opioid production at the level of TH and ppEnk gene transcription neuronal plasticity, cardiovascular functions, stress adaptation and behavior.


Subject(s)
Butyrates/metabolism , Catecholamines/biosynthesis , Gene Expression Regulation, Developmental/genetics , Neurons/enzymology , Promoter Regions, Genetic/genetics , Tyrosine 3-Monooxygenase/genetics , Adrenal Medulla/drug effects , Adrenal Medulla/enzymology , Adrenal Medulla/growth & development , Animals , Butyrates/pharmacology , Cyclic AMP Response Element-Binding Protein/genetics , DNA-Binding Proteins/drug effects , DNA-Binding Proteins/genetics , Enkephalins/biosynthesis , Enkephalins/genetics , Gene Expression Regulation, Developmental/drug effects , Mutagenesis, Site-Directed , Neurons/drug effects , PC12 Cells , Promoter Regions, Genetic/drug effects , Protein Precursors/genetics , Rats , Response Elements/drug effects , Response Elements/genetics , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
13.
Ann N Y Acad Sci ; 1018: 370-7, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15240392

ABSTRACT

Stress induces tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) gene expression in sympathetic ganglia and adrenal medulla (AM). However, distinct molecular mechanisms appear to regulate these genes in these locations. The elevation of TH mRNA in response to single immobilization stress (IMO) in AM is robust, but transient, while the induction of TH and DBH mRNAs in sympathetic ganglia is slower and more long lasting. Injections of adrenocorticotropic hormone (ACTH) elicited induction of TH and DBH gene expression in rat sympathetic ganglia, but not in AM. The superior cervical (SCG) and stellate (StG) ganglia, but not AM, were found to express mRNA for the MC-2 receptor, the major ACTH responsive receptor in adrenal cortex. IMO led to increase in MC-2 receptor mRNA levels in SCG. Thus, ACTH, via the MC-2 receptor, may be directly involved in the stress-elicited regulation of norepinephrine biosynthesis in sympathetic ganglia. The signaling pathways triggered by IMO differed in these locations. In AM, IMO triggered activation of the MAP kinase, JNK, and induction of AP1 factors, Egr1 and phosphorylation of CREB. In contrast in the SCG, with IMO we did not observe changes in JNK and little binding to the AP1 motif of the TH promoter. However, there was an increase in CREB binding to the CRE site of the TH promoter. The results reveal differential mechanisms of regulation of catecholamine biosynthetic enzymes by stress in two components of the sympathoadrenal system and should provide basis for possible selective pharmacologic interventions.


Subject(s)
Adrenal Medulla/enzymology , Catecholamines/biosynthesis , Dopamine beta-Hydroxylase/genetics , Ganglia, Sympathetic/enzymology , Gene Expression Regulation, Enzymologic/physiology , Stress, Physiological/enzymology , Tyrosine 3-Monooxygenase/genetics , Animals , Male , Rats , Rats, Sprague-Dawley
14.
Neuroreport ; 15(7): 1177-81, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15129169

ABSTRACT

We examined the effect of butyrate on neurotransmitter-related gene expression and calcium homeostasis in PC12 cells. Pretreatment with Ca2+ chelators (EGTA or BAPTA-AM) attenuated the butyrate-triggered accumulation of TH and ppEnk mRNA indicating that Ca2+ plays a role in butyrate-induced regulation of neuronal genes. Butyrate alone did not alter intracellular Ca2+ levels as determined by Fura-PE3 fluorescence; however, pretreatment with butyrate (18-24 h) reduced the first Ca2+ peak and prevented the second sustained rise in [Ca2+]i as induced by nicotine or ryanodine. In contrast, butyrate had no effect on Ca2+ transients when added shortly before or during nicotine or ryanodine stimulation. These results suggest that chronic butyrate exposure can modulate cell responses by affecting intracellular Ca2+ signaling.


Subject(s)
Butyrates/pharmacology , Calcium/physiology , Gene Expression Regulation/drug effects , Neurotransmitter Agents/biosynthesis , Animals , Gene Expression Regulation/physiology , Intracellular Fluid/drug effects , Intracellular Fluid/metabolism , Intracellular Fluid/physiology , Neurotransmitter Agents/metabolism , PC12 Cells , Rats
15.
Pediatr Res ; 55(5): 847-54, 2004 May.
Article in English | MEDLINE | ID: mdl-14739357

ABSTRACT

Circulating short-chain fatty acids (SCFAs) are primarily derived from bacterial fermentation of carbohydrates in the colon where they function as physiologic modulators of epithelial cell maturation. Butyrate has been shown to induce tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, and enkephalin neuropeptide gene transcription, suggesting a role in perinatal sympathoadrenal stress-adaptation. We sought to determine whether there were SCFA structural requirements for this effect. Nine biologically relevant SCFAs and butyrate derivatives were tested in an in vitro model (PC12, rat pheochromocytoma cells) for their ability to regulate neurotransmitter-related gene expression. Our results revealed that among all the studied SCFAs, only propionate and butyrate increased tyrosine hydroxylase and proenkephalin mRNA levels. The functional activity was selective to the carbon atom chain length and associated with the presence of an ethyl moiety in the carbon atom backbone chain. Modifications or absence of this domain affected the gene induction response, suggesting a receptor-mediated mechanism(s). Moreover, propionate, butyrate, and the drug 4-phenylbutyrate were each shown to regulate transmitter genes via at least three independent mechanisms: histone hyperacetylation, cAMP signaling, or peroxisome proliferator-activated receptor gamma-mediated pathways. Thus, the biologic impact of SCFAs on catecholaminergic and opioid systems depend on the activation of SCFA-specific, dose-specific, and gene-specific molecular mechanisms. We speculate that 1) circulating levels of SCFAs may influence sympathoadrenal transmitter biosynthesis and hence whole animal stress-adaptive responsiveness after birth, and 2) the adverse effects of antibiotics on delayed acquisition of postnatal gut flora may affect this apparent evolutionary advantage of gut colonization.


Subject(s)
Enkephalins/biosynthesis , Fatty Acids, Volatile/metabolism , Protein Precursors/biosynthesis , Tyrosine 3-Monooxygenase/biosynthesis , Acetylation , Animals , Blotting, Northern , Blotting, Western , Cell Line , Chromatin/metabolism , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Enkephalins/chemistry , Gene Expression Regulation , Histones/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , PC12 Cells , Phenylbutyrates/metabolism , Protein Precursors/chemistry , Protein Structure, Tertiary , RNA, Messenger/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Stereoisomerism , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation , Tyrosine 3-Monooxygenase/chemistry
16.
Pediatr Res ; 53(1): 113-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12508089

ABSTRACT

Accelerated maturation of peripheral sympathoadrenal transmitter levels and function occurs at 7-10 postnatal days in the rat. This event is temporally disconnected from the timing of major changes in physiologic stimuli evident after the birthing process (i.e. temperature, oxygen, sound, light, etc.). Colonization of the gut, fermentation of carbohydrates, and production of short-chain fatty acids (e.g. butyrate) mirrors this postnatal time course. In this report, we examined the interaction between butyrate differentiation of rat pheochromocytoma cells and cholinergic-nicotinic induction of the neuropeptide (enkephalin) and catecholamine-related biosynthetic enzymes (tyrosine hydroxylase, dopamine beta-hydroxylase, phenylethanolamine N-methyltransferase). Our results show that butyrate induces both preproenkephalin and tyrosine hydroxylase mRNA through a proximal promoter region and that this regulatory step is time and dose dependent. Moreover, there is an additional interaction with cholinergic-nicotinic inducible mechanisms consistent with classically described transsynaptic cholinergic regulation of these genes. Dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase promoters were not affected by butyrate treatment. We speculate that colonization of the human gut (along with the attendant fermentation of enteral carbohydrates to short-chain fatty acids) may represent a mechanism through which environmental signals affect postnatal maturation of sympathoadrenal transmitter systems.


Subject(s)
Butyrates/pharmacology , Enkephalins/genetics , Gene Expression Regulation/drug effects , Nicotine/pharmacology , Protein Precursors/genetics , Tyrosine 3-Monooxygenase/genetics , Animals , Blotting, Northern , Cell Differentiation , PC12 Cells , Promoter Regions, Genetic , Rats
17.
J Appl Physiol (1985) ; 93(2): 463-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12133851

ABSTRACT

The effect of submaximal endurance training (SET) on sympathoadrenal activity is not clear. We tested the hypothesis that SET (90 min/day, 5 days/wk, for 12 wk) elevates mRNA expression of catecholamine (CA) biosynthetic enzymes, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DbetaH) in the adrenal medullae of adult, female Sprague-Dawley rats. SET increased TH protein level by 35%, TH activity by 62%, TH mRNA expression by 40%, and DbetaH mRNA expression by 67%. In addition, we examined the effect of SET on Fos-related antigens (FRAs), FRA-2 immunoreactivity, and activator protein (AP)-1 binding activity. SET increased AP-1 binding activity by 78%; however, it did not affect late FRAs and FRA-2 immunoreactivity. Because the regulation of neuropeptide Y (NPY) often parallels that of CAs, we also examined the effect of SET on NPY mRNA expression. Indeed, SET elevated NPY mRNA expression as well. We conclude that 1) SET elicits a pretranslational stimulatory effect on adrenomedullary CA biosynthetic enzymes, 2) another immediate early mRNA product, rather than FRA-2, may contribute to the increase in AP-1 binding activity in response to SET, and 3) SET increases NPY mRNA expression.


Subject(s)
Adrenal Medulla/enzymology , Dopamine beta-Hydroxylase/genetics , Physical Conditioning, Animal/physiology , Physical Exertion/physiology , Tyrosine 3-Monooxygenase/genetics , Adrenal Medulla/anatomy & histology , Animals , Antibodies , Body Weight , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Female , Fos-Related Antigen-2 , Gene Expression Regulation, Enzymologic/physiology , Neuropeptide Y/genetics , Organ Size , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factors/analysis , Transcription Factors/genetics , Transcription Factors/immunology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...