Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Growth Differ ; 7(5): 573-86, 1996 May.
Article in English | MEDLINE | ID: mdl-8732667

ABSTRACT

We constructed expression vectors containing either rat fibroblast growth factor (FGF)-1 for FGF-2 cDNA cloned in either the sense orientation or antisense orientation relative to the metallothionein promoter of plasmid pMTneo.1. Stable AXC/SSh rat prostate cancer cell transfectants expressing either chimeric FGF-1-sense, chimeric FGF-1-antisense, or chimeric FGF-2-antisense transcripts were obtained. Stable transfectants expressing chimeric FGF-2-sense transcripts were not obtained. Control, sense, and antisense transfectants expressed endogenous FGF-1 and endogenous FGF-2 transcripts, implying that transfection did not eliminate endogenous FGF transcripts. Control transfectants and sense transfectants contained FGF-1 isoforms having a mass of 16.4 or 17.3 kDa and FGF-2 isoforms having a mass of 17, 19.5, or 21.5 kDa. Significantly, adult AXC/SSh rat prostate contained only the 17.3 kDa FGF-1 isoform and the 17 kDa FGF-2 isoform, indicating that neoplastic transformation was associated with elaboration of novel, prostate epithelial cell-derived FGF-2 isoforms. FGF-1 antisense RNA expression eliminated transfectant FGF-1 isoforms without affecting FGF-2 isoform content. Similarly, FGF-2-antisense RNA expression eliminated the transfectant 21.5 kDa FGF-2 isoform, diminished the 19.5 kDa FGF-2 isoform content, and reduced the 17 kDa FGF-2 isoform content to barely detectable levels without affecting the FGF-1 isoform content. This established that FGF-antisense RNAs specifically inhibited translation of cognate, endogenous FGF transcripts. Doubling times of control transfectants and sense transfectants were indistinguishable and were not affected by including FGF-1 or FGF-2 in the culture medium. Doubling times of FGF-1-antisense or FGF-2-antisense transfectants were 1.3- to 1.4-fold greater than those of control transfectants or sense transfectants, and either exogenous FGF-1 or exogenous FGF-2 decreased antisense transfectant doubling times to values indistinguishable from those of control transfectants or sense transfectants. This established that with regard to prostate cancer cell proliferation: (a) endogenous FGF-1 cannot substitute for endogenous FGF-2 eliminated by FGF-2-antisense RNA expression; and (b) endogenous FGF-2 cannot substitute for endogenous FGF-1 eliminated by FGF-1-antisense RNA expression. In contrast, either exogenous FGF-1 or exogenous FGF-2 decreased antisense transfectant doubling time. The results of these studies establish that endogenous FGF-1 and endogenous FGF-2 modulate prostate cancer cell proliferation and imply that FGF-1 and FGF-2 of endogenous and exogenous origin conjointly control aspects of prostate cancer cell homeostasis. Our findings suggest complex interaction between components of prostate cancer cell regulatory processes and endogenously produced and exogenously accessible FGF-1 and FGF-2.


Subject(s)
Fibroblast Growth Factor 1/physiology , Fibroblast Growth Factor 2/physiology , Prostatic Neoplasms , Animals , Base Sequence , Blood Proteins/pharmacology , Blotting, Southern , Blotting, Western , Cell Count , Cell Division/drug effects , Cell Division/physiology , Culture Media , DNA, Neoplasm/analysis , Fibroblast Growth Factor 1/analysis , Fibroblast Growth Factor 1/pharmacology , Fibroblast Growth Factor 2/analysis , Fibroblast Growth Factor 2/pharmacology , Male , Mitogens/pharmacology , Polymerase Chain Reaction , Prostate/chemistry , Prostate/cytology , Prostate/physiology , RNA, Antisense/metabolism , RNA, Messenger/analysis , Rats , Rats, Inbred Strains , Recombinant Fusion Proteins/genetics , Signal Transduction/physiology , Transcription, Genetic/drug effects , Transcription, Genetic/physiology , Transfection , Tumor Cells, Cultured/chemistry , Tumor Cells, Cultured/cytology , Tumor Cells, Cultured/physiology
2.
Blood ; 75(2): 488-98, 1990 Jan 15.
Article in English | MEDLINE | ID: mdl-2153038

ABSTRACT

The CD11b/CD18 (Mac-1) heterodimeric surface glycoprotein contributes to a broad range of adherence-dependent neutrophil inflammatory functions. Previous investigations have indicated that diminished expression or regulation of Mac-1 may underlie abnormalities of stimulated adhesion and chemotaxis of neonatal neutrophils in vitro and inflammatory deficits in human neonates. To define the pathogenic mechanisms contributing to these findings, we compared the distribution and translocation of Mac-1 in subcellular fractions of neonatal and adult neutrophils before and after chemotactic stimulation. The total cell content of Mac-1 and the proportions of Mac-1 in beta fractions (vitamin B12 binding protein-rich granules), pre-gamma fractions (gelatinase-rich granules), or gamma fractions (plasma membrane) of neonatal neutrophils were comparable with those of adult neutrophils. However, after stimulation with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 10 nmol/L, 37 degrees C, 15 minutes), neonatal neutrophils demonstrated (1) diminished translocation of Mac-1 from pre-gamma fractions (P less than .05), and (2) diminished surface expression of Mac-1 (P less than .05), as compared with healthy adult neutrophils. As shown in enzymatic and immunochemical assays, neonatal cells contained significantly (P less than .01) diminished levels of neutrophil gelatinase. In response to FMLP (0.1 to 10 nmol/L, 37 degrees C, 15 minutes), neonatal suspensions also released significantly (P less than .001) less gelatinase, as compared with adult neutrophil suspensions. These observations demonstrate that diminished mobilization of Mac-1 from gelatinase-rich granular pools in neonatal neutrophils is associated with abnormal surface expression of this glycoprotein after chemotactic stimulation. This abnormality may contribute, in part, to abnormal migratory properties of neonatal neutrophils in response to inflammatory stimuli.


Subject(s)
Antigens, Differentiation/metabolism , Infant, Newborn/blood , Neutrophils/metabolism , Receptors, Leukocyte-Adhesion/metabolism , Biological Transport , Cell Compartmentation , Chemotaxis, Leukocyte , Cytoplasmic Granules/metabolism , Exocytosis/drug effects , Gelatinases , Humans , Lactoferrin/metabolism , Macrophage-1 Antigen , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Pepsin A/metabolism , Subcellular Fractions/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Transcobalamins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...