Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Toxicol In Vitro ; 92: 105650, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37463634

ABSTRACT

Real-time monitoring of dosimetry is critical to mitigating the constraints of offline measurements. To address this need, the use of the Scanning Mobility Particle Sizer (SMPS) to estimate the dose delivered through the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was assessed. CuO nanoparticles suspended in ethanol at different concentrations (0.01-10 mg/mL) were aerosolized using a Collison nebulizer and diluted with air at a ratio of either 1:3 (setup 1) or 1:18 (setup 2). From the aerosol volume concentrations measured by the SMPS, density of CuO (6.4 g/cm3), collection time (5-30 min), flow rate (0.5 LPM) and deposition area (0.28 cm2), the mass doses (DoseSMPS) were observed to increase exponentially over time and ranged from 0.02 ± 0.001 to 84.75 ± 3.49 µg/cm2. The doses calculated from the Cu concentrations determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) (DoseICP) also increased exponentially over time (0.01 ± 0.01-97.25 ± 1.30 µg/cm2). Regression analysis between DoseICP and DoseSMPS showed R2 ≥ 0.90 for 0.1-10 mg/mL. As demonstrated, the SMPS can be used to monitor the delivered dose in real-time, and controlled delivery of mass doses with a 226-fold range can be attained in ≤30 min in DAVID by adjusting the nebulizer concentration, dilution air and time.


Subject(s)
Nanoparticles , Particle Size , Aerosols/chemistry
2.
Hyg Environ Health Adv ; 7: 100061, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37305381

ABSTRACT

This study aimed to provide environmental surveillance data for evaluating the risk of acquiring SARS-CoV-2 in public areas with high foot traffic in a university. Air and surface samples were collected at a university that had the second highest number of COVID-19 cases among public higher education institutions in the U.S. during Fall 2020. A total of 60 samples were collected in 16 sampling events performed during Fall 2020 and Spring 2021. Nearly 9800 students traversed the sites during the study period. SARS-CoV-2 was not detected in any air or surface samples. The university followed CDC guidance, including COVID-19 testing, case investigations, and contact tracing. Students, faculty, and staff were asked to maintain physical distancing and wear face coverings. Although COVID-19 cases were relatively high at the university, the possibility of acquiring SARS-CoV-2 infections at the sites tested was low.

3.
J Aerosol Sci ; 159: 105870, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34483358

ABSTRACT

Individuals with COVID-19 are advised to self-isolate at their residences unless they require hospitalization. Persons sharing a dwelling with someone who has COVID-19 have a substantial risk of being exposed to the virus. However, environmental monitoring for the detection of virus in such settings is limited. We present a pilot study on environmental sampling for SARS-CoV-2 virions in the residential rooms of two volunteers with COVID-19 who self-quarantined. Apart from standard surface swab sampling, based on availability, four air samplers positioned 0.3-2.2 m from the volunteers were used: a VIable Virus Aerosol Sampler (VIVAS), an inline air sampler that traps particles on polytetrafluoroethylene (PTFE) filters, a NIOSH 2-stage cyclone sampler (BC-251), and a Sioutas personal cascade impactor sampler (PCIS). The latter two selectively collect particles of specific size ranges. SARS-CoV-2 RNA was detected by real-time Reverse-Transcription quantitative Polymerase Chain Reaction (rRT-qPCR) analyses of particles in one air sample from the room of volunteer A and in various air and surface samples from that of volunteer B. The one positive sample collected by the NIOSH sampler from volunteer A's room had a quantitation cycle (Cq) of 38.21 for the N-gene, indicating a low amount of airborne virus [5.69E-02 SARS-CoV-2 genome equivalents (GE)/cm3 of air]. In contrast, air samples and surface samples collected off the mobile phone in volunteer B's room yielded Cq values ranging from 14.58 to 24.73 and 21.01 to 24.74, respectively, on the first day of sampling, indicating that this volunteer was actively shedding relatively high amounts of SARS-CoV-2 at that time. The SARS-CoV-2 GE/cm3 of air for the air samples collected by the PCIS was in the range 6.84E+04 to 3.04E+05 using the LED-N primer system, the highest being from the stage 4 filter, and similarly, ranged from 2.54E+03 to 1.68E+05 GE/cm3 in air collected by the NIOSH sampler. Attempts to isolate the virus in cell culture from the samples from volunteer B's room with the aforementioned Cq values were unsuccessful due to out-competition by a co-infecting Human adenovirus B3 (HAdVB3) that killed the Vero E6 cell cultures within 4 days of their inoculation, although Cq values of 34.56-37.32 were measured upon rRT-qPCR analyses of vRNA purified from the cell culture medium. The size distribution of SARS-CoV-2-laden aerosol particles collected from the air of volunteer B's room was >0.25 µm and >0.1 µm as recorded by the PCIS and the NIOSH sampler, respectively, suggesting a risk of aerosol transmission since these particles can remain suspended in air for an extended time and travel over long distances. The detection of virus in surface samples also underscores the potential for fomite transmission of SARS-CoV-2 in indoor settings.

4.
Heliyon ; 6(2): e03411, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083218

ABSTRACT

Coconut tree (Cocos nucifera L.), a perennial, monocot tree, belonging to the family Arecaceae, is distributed through the tropics. Bioactivities of coconut water, husk fiber, oil, flowers, spadix and mesocarp of coconut fruit are widely reported. However, there is no study on cotyledon of coconut. In this study, carbohydrates, proteins, lipids, phenols, flavonoids, tannins, alkaloids and antioxidants were quantified in hot and cold percolated extracts of coconut cotyledon. Further, the antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl (DPPH); ferric reducing antioxidant power (FRAP); ferric thiocyanate (FTC); thiobarbituric acid (TBA); nitric oxide (NO) radical scavenging and ß-carotene bleaching assays. Among the secondary metabolites, only cardiac glycosides were detected. Methanolic extraction by cold percolation extracted high content of secondary metabolites and exhibited significant antioxidant activity in DPPH, FRAP, NO and ß-carotene bleaching assays, with EC50 of 0.12, 6.43, 16.21 and 8.09 mg/ml respectively. The chloroform extracts recorded high lipid content and scavenged the radicals in FTC (EC50 13.31 mg/ml) and TBA (EC50 9.21 mg/ml) assays. The study recommends extraction of compounds using methanol through cold percolation. The cotyledon of coconut is found to be a potent nutritive source equivalent to the endosperm.

SELECTION OF CITATIONS
SEARCH DETAIL
...