Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
BMC Plant Biol ; 24(1): 355, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724929

ABSTRACT

BACKGROUND: Jackfruit (Artocarpus heterophyllus) is an economically valuable fruit tree in Uganda. However, the production of jackfruit in Uganda is low. Additionally, because of deforestation, genetic erosion of the resource is predicted before its exploitation for crop improvement and conservation. As a prerequisite for crop improvement and conservation, 100 A. heterophyllus tree isolates from the Kayunga and Luwero districts in Uganda were characterized using 16 morphological and 10 microsatellite markers. RESULTS: The results from the morphological analysis revealed variations in tree height, diameter at breast height (DBH), and crown diameter, with coefficient of variation (CV) values of 20%, 41%, and 33%, respectively. Apart from the pulp taste, variation was also observed in qualitative traits, including tree vigor, trunk surface, branching density, tree growth habit, crown shape, leaf blade shape, fruit shape, fruit surface, flake shape, flake color, flake flavor and pulp consistency/texture. Genotyping revealed that the number of alleles amplified per microsatellite locus ranged from 2 to 5, with an average of 2.90 and a total of 29. The mean observed (Ho) and expected (He) heterozygosity were 0.71 and 0.57, respectively. Analysis of molecular variance (AMOVA) indicated that 81% of the variation occurred within individual trees, 19% among trees within populations and 0% between the two populations. The gene flow (Nm) in the two populations was 88.72. The results from the 'partitioning around medoids' (PAM), principal coordinate analysis (PCoA) and genetic cluster analysis further revealed no differentiation of the jackfruit populations. The Mantel test revealed a negligible correlation between the morphological and genetic distances. CONCLUSIONS: Both morphological and genetic analyses revealed variation in jackfruit within a single interbreeding population. This diversity can be exploited to establish breeding and conservation strategies to increase the production of jackfruit and hence boost farmers' incomes. However, selecting germplasm based on morphology alone may be misleading.


Subject(s)
Artocarpus , Microsatellite Repeats , Uganda , Artocarpus/genetics , Artocarpus/anatomy & histology , Microsatellite Repeats/genetics , Fruit/genetics , Fruit/anatomy & histology , Fruit/growth & development , Genetic Variation , Genotype
2.
J Infect ; 88(5): 106148, 2024 May.
Article in English | MEDLINE | ID: mdl-38588959

ABSTRACT

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.


Subject(s)
High-Throughput Nucleotide Sequencing , Measles , Humans , Uganda/epidemiology , Child, Preschool , Measles/epidemiology , Measles/virology , Infant , Child , Male , Female , Adolescent , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Genome, Viral , Adult , Young Adult , Virus Diseases/epidemiology , Virus Diseases/virology , Metagenomics , Measles virus/genetics , Measles virus/isolation & purification , Measles virus/classification
3.
Malar J ; 22(1): 336, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936194

ABSTRACT

The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival  via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Malaria/prevention & control , Africa South of the Sahara , Seasons
4.
PLOS Glob Public Health ; 3(8): e0001566, 2023.
Article in English | MEDLINE | ID: mdl-37585383

ABSTRACT

The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world. In particular, multiple countries in East, Central, and West Africa had significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, an exploratory study of stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n = 29) and from hospitalized Ugandan COVID-19 patients (n = 3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population, however this may be in part due to the limited sample size examined. The rates of cross-reactive T-cell populations in this exploratory Ugandan population appears higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.

5.
Vet Parasitol Reg Stud Reports ; 42: 100889, 2023 07.
Article in English | MEDLINE | ID: mdl-37321794

ABSTRACT

Gastrointestinal parasites are among the most economically important pathogens of small ruminants causing serious economic losses and animal welfare problems for the livestock industry worldwide. The emergence of anthelmintic resistant H. contortus in small ruminants is a serious problem because it undermines effective helminth control and results in reduced productivity. Little is known about resistance to benzimidazoles (BZ) in Haemonchus in goats and sheep in Uganda. The objective of this study was to determine the prevalence of gastrointestinal parasites and to identify the presence of benzimidazole resistance associated mutations in the ß-tubulin isotype 1 gene of Haemonchus contortus in goats from selected districts of Uganda. A total of 200 goats from 10 districts of Uganda slaughtered at Kalerwe abattoir in Kampala were sampled for H. contortus adult worms. Faecal samples were also collected to detect other intestinal parasites. Faecal microscopy and analysis were performed using flotation and sedimentation techniques. DNA was extracted from adult worms and PCR and sequencing of the ITS- 2 region and ß-tubulin isotype 1 gene performed to identify H. contortus species and to determine the presence of mutations associated with anthelmintic resistance respectively. Faecal microscopy showed that the most prevalent intestinal parasites were coccidia (98%), strongyles (97.5%), Strongyloides (82%), Paramphistomum (74.5%), Moniezia (46%), Fasciola (1.5%) and Trichuris (1%). Most goats had a high intestinal burden of coccidia (≥ 5000 oocyst per gram) and strongyles (≥ 1000 egg per gram), 65% and 67.5%, respectively. The prevalence of H. contortus adult worms was 63% (126/200). Sequencing of the partial ß-tubulin isotype 1 gene of 54 Haemonchus contortus adult male isolates revealed the presence of mutations associated with anthelmintic resistance. The F200Y mutation was the most common mutation (13% of samples with good beta-tubulin sequences) followed by the E198A and E198K mutations, both found in 9% of sequenced samples. Mutation F167Y was not identified in any of the samples and there were no heterozygous individuals for any of the SNPS associated with BZ resistance that were identified in this study. These findings highlight the need for controlled use of anthelmintics especially benzimidazoles, to enable sustainable control of H. contortus in Uganda, and a need for further investigation to understand the resistance of other parasites identified in this study.


Subject(s)
Anthelmintics , Haemonchus , Parasites , Male , Sheep , Animals , Haemonchus/genetics , Tubulin/genetics , Goats , Prevalence , Uganda/epidemiology , Benzimidazoles/pharmacology , Anthelmintics/pharmacology , Mutation
6.
Pathogens ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839567

ABSTRACT

East Coast fever (ECF) is a tick-borne disease of cattle that hinders the development of the livestock industry in eastern, central and southern Africa. The 'Muguga cocktail' live vaccine, delivered by an infection and treatment method (ITM), remains the only immunisation strategy of controlling ECF. However, there are challenges of the live vaccine inducing ECF carrier status in immunised animals and the possibility of lack of protection from parasite strains that are antigenically different from the vaccine strains. In Uganda, there are insufficient data regarding the ECF carrier status and T. parva genetic diversity in vaccinated and associated non-vaccinated cattle to assess the effectiveness of ITM vaccination. Blood was collected from recently ECF vaccinated (98) and non-vaccinated (73) cattle from Iganga district in Eastern Uganda at 120 days post-vaccination. The p104 gene nested PCR was used to screen for T. parva DNA, 11 minisatellite and 3 microsatellite markers (SSR) were used for genotyping. Two minisatellite markers (MS7 and MS19) were used to determine whether ECF carrier status was due to the T. parva vaccine or local strains. The prevalence of T. parva based on p104 nPCR was 61.2% (60/98) (RR 2.234, 95% CI 1.49-3.35, p-value < 0.001) among recently vaccinated cattle and 27.4% (20/73) (RR 1.00) among associated non-vaccinated cattle. The Muguga cocktail vaccine strains were responsible for carrier status in 10 (58.8%) by MS7 and 11 (64.7%) by MS19 in vaccinated cattle. Genotypes of T. parva with different-sized alleles to the vaccine strains that could be potential 'breakthroughs' were detected in 2 (11.8%)) and 4 (23.5%) isolates from vaccinated cattle based on MS7 and MS19 minisatellite markers, respectively. Using 14 SSR markers, T. parva diversity was higher in vaccinated (Na = 2.214, Ne = 1.978, He = 0.465) than associated non-vaccinated (Na = 1.071, Ne = 1.048, He = 0.259) cattle. The principal component analysis (PCA) showed isolates from vaccinated cattle were closely related to those from non-vaccinated cattle. The analysis of molecular variance (AMOVA) revealed high genetic variation (96%) within T. parva isolates from vaccinated and non-vaccinated cattle but low variation (4%) between vaccinated and non-vaccinated cattle. This study reveals the role of ITM in inducing the carrier status and higher T. parva genetic diversity in vaccinated cattle. The low genetic variation between T. parva isolates in both vaccinated and non-vaccinated cattle may be suggestive of the protective role of vaccine strains against genetically related local strains in the study area.

7.
Pathogens ; 12(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36678463

ABSTRACT

The integrated control of East Coast fever (ECF) by early diagnosis and treatment involving acquired immunity induced by natural infection in Ankole cattle was assessed. A longitudinal study was carried out in Kiruhura district, southwestern Uganda for six months on 244 Ankole breed of cattle from 18 herds under natural tick challenge and relaxed tick control measures. Calves aged three to six months old were recruited and monitored daily by farmers for detection of ECF clinical symptoms. The reported sick animals were treated using Buparvaquone and treatment outcome determined. Monthly follow-ups and blood collections were done to monitor ECF status. Blood was analyzed for Theileria parva parasites by microscopy, DNA by polymerase chain reaction (PCR) and antibodies by enzyme-linked immunosorbent assay (ELISA). The overall prevalence of ECF clinical disease within six months period was 30.3% (74). The major symptoms of early clinical ECF disease were fever and enlarged parotid or prescapular lymph nodes. Clinical cases were categorized as mild, 24% (18) or moderate, 76% (56). There was an overall recovery rate of 100% (74) of the ECF cases whereby 94.6% (70) recovered promptly and 5.4% (4) recovered slowly. Based on blood analysis, prevalence of ECF at baseline was 3.7% (9) by microscopy, 31.1% (76) by PCR and 38.1% (93) by ELISA. A significant increase (p < 0.05) was shown by the increased number of calves with T. parva specific antibodies in the sera from 38.1% at baseline to 68.8% after six months. High antibody levels (positive percentage ≥ 50%) were detected in all ECF-treated and recovered calves at the end of six months. The acquired immunity to ECF was high in treated and recovered cattle, indicating that natural exposure to infection, accurate early diagnosis and effective treatment enhance development of immune-protection in indigenous cattle in an endemic area. The prominent early clinical symptoms for ECF could be exploited in the development of decision support tools for chemotherapy and other integrated control measures.

8.
medRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711579

ABSTRACT

The estimated mortality rate of the SARS-CoV-2 pandemic varied greatly around the world with multiple countries in East, Central, and West Africa having significantly lower rates of COVID-19 related fatalities than many resource-rich nations with significantly earlier wide-spread access to life-saving vaccines. One possible reason for this lower mortality could be the presence of pre-existing cross-reactive immunological responses in these areas of the world. To explore this hypothesis, stored peripheral blood mononuclear cells (PBMC) from Ugandans collected from 2015-2017 prior to the COVID-19 pandemic (n=29) and from hospitalized Ugandan COVID-19 patients (n=3) were examined using flow-cytometry for the presence of pre-existing SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell populations using four T-cell epitope mega pools. Of pre-pandemic participants, 89.7% (26/29) had either CD4+ or CD8+, or both, SARS-CoV-2 specific T-cell responses. Specifically, CD4+ T-cell reactivity (72.4%) and CD8+ T-cell reactivity (65.5%) were relatively similar, and 13 participants (44.8%) had both types of cross-reactive types of T-cells present. There were no significant differences in response by sex in the population. The rates of cross-reactive T-cell populations in these Ugandans is higher than previous estimates from resource-rich countries like the United States (20-50% reactivity). It is unclear what role, if any, this cross-reactivity played in decreasing COVID-19 related mortality in Uganda and other African countries, but does suggest that a better understanding of global pre-existing immunological cross-reactivity could be an informative data of epidemiological intelligence moving forward.

9.
Microbiol Resour Announc ; 11(3): e0081121, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35262399

ABSTRACT

Here, we present the genome sequences of four bacteriophages that infect avian pathogenic Escherichia coli. The phages were isolated from raw sewage in Kampala, Uganda. The genome sizes of the phages ranged between 143,140 bp and 178,307 bp, with an average G+C content of 41.25%.

10.
BMC Res Notes ; 15(1): 97, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255971

ABSTRACT

OBJECTIVE: Currently, the only available staging criterion for T. b. rhodesiense requires a lumber puncture to collect and later examine cerebrospinal fluid (CSF). This study examined the potential of plasma Neuron-Specific Enolase (NSE) in discriminating between early and late-stage patients. RESULTS: When median NSE levels were compared between early and late-stage patients, results showed a significant (P < 0.02) upregulation among late-stage patients (599.8 ng/mL). No significant differences (P > 0.9) in NSE levels were observed between early-stage patients (300 ng/mL) and controls (454 ng/mL). We used Receiver Operator Characteristic (ROC) curves to explore the likelihood of using plasma NSE as a potential stage biomarker in discriminating between early and late-stage HAT patients. Our results showed that NSE demonstrated an area under the curve (AUC) of 0.702 (95% CI 0.583-0.830). A high staging accuracy for NSE was obtained by using a cutoff of > 346.5 ng/mL with a sensitivity of 68.6% (95% CI 55-79.7%) and a specificity of 93.3% (95% CI 70.2-99.7%). Although our results demonstrate that plasma NSE is upregulated in T. b. rhodesiense sleeping sickness patients, its value in discriminating between late and early-stage patients is limited. However, future studies could consider improving its specificity by combining it with other identified plasma biomarkers.


Subject(s)
Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Animals , Biomarkers/cerebrospinal fluid , Humans , Phosphopyruvate Hydratase , Plasma , Trypanosomiasis, African/diagnosis
11.
Vaccines (Basel) ; 11(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36679944

ABSTRACT

Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.

12.
PLoS One ; 15(12): e0239107, 2020.
Article in English | MEDLINE | ID: mdl-33320859

ABSTRACT

Avian Pathogenic Escherichia coli (APEC) cause colibacillosis leading to significant economic losses in the poultry industry. This laboratory-based study aimed at establishing stocks of avian pathogenic Escherichia coli lytic bacteriophages, for future development of cocktail products for colibacillosis management. The study determined the antibiotic susceptibility; phylogenetic categories, occurrence of selected serotypes and virulence genes among Escherichia coli stock isolates from chicken colibacillosis cases; and evaluated bacteriophage activity against the bacteria. Escherichia coli characterization was done through phenotypic and multiplex PCR methods. Bacteriophage isolation and preliminary characterization was achieved using the spot assay and overlay plating techniques. Fifty-six (56) isolates were phenotypically confirmed as E. coli and all exhibited resistance to at least one antimicrobial agent; while multi-drug resistance (at least three drugs) was encountered in 50 (89.3%) isolates. The APEC isolates mainly belonged to phylogroups A and D, representing 44.6% and 39.3%, respectively; whereas serotypes O1, O2 and O78 were not detected. Of the 56 isolates, 69.6% harbored at least one virulence gene, while 50% had at least four virulence genes; hence confirmed as APEC. Virulence genes, ompT and iutA were the most frequent in 33 (58.9%) and 32 (57.1%) isolates respectively; while iroN least occurred in 23 (41.1%) isolates. Seven lytic bacteriophages were isolated and their host range, at 1×108 PFU/ml, varied from 1.8% to 17.9% of the 56 APEC isolates, while the combined lytic spectrum was 25%. Phage stability was negatively affected by increasing temperatures with both UPEC04 and UPEC10 phages being undetectable at 70°C; whereas activity was detected between pH 2 and 12. The high occurrence of APEC isolates resistant against the commonly used antibiotics supports the need for alternative strategies of bacterial infections control in poultry. The low host range exhibited by the phages necessitates search for more candidates before in-depth phage characterization and application.


Subject(s)
Bacteriophages/genetics , Escherichia coli Infections/virology , Escherichia coli/virology , Poultry Diseases/virology , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Chickens/virology , Coliphages/genetics , Escherichia coli/drug effects , Escherichia coli Proteins/genetics , Phylogeny , Uganda , Virulence/genetics , Virulence Factors/genetics
13.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32660999

ABSTRACT

Mutations that mediate resistance of Plasmodium falciparum to aminoquinoline antimalarials are selected by prior drug use and may alter parasite fitness, but associations with clinical presentations are uncertain. We evaluated genotypes in samples from a case-control study of determinants of severe malaria in Ugandan children 4 months to 10 years of age. We studied 274 cases with severe malaria matched by age and geography to 275 uncomplicated malaria controls and 179 asymptomatic parasitemic controls. The overall prevalence of mutations of interest (considering mixed results as mutant) was 67.0% for PfCRT K76T, 8.5% for PfMDR1 N86Y, 71.5% for PfMDR1 Y184F, and 14.7% for PfMDR1 D1246Y. Compared to asymptomatic controls, the odds of mutant PfCRT 76T were lower for uncomplicated (odds ratio, 0.42 [95% confidence interval, 0.24 to 0.72]; P < 0.001) or severe (0.56 [0.32 to 0.97]; P = 0.031) malaria; the odds of mutant PfMDR1 86Y were lower for uncomplicated (0.33 [0.16 to 0.65]; P < 0.001) or severe (0.21 [0.09 to 0.45]; P < 0.001) malaria; and the odds of mutant PfMDR1 1246Y were higher for uncomplicated (1.83 [0.90 to 3.98]; P = 0.076) or severe (2.06 [1.01 to 4.55]; P = 0.033) malaria. The odds of mutant PfMDR1 184F were lower in severe than asymptomatic (0.59 [0.37 to 0.92]; P = 0.016) or uncomplicated (0.61 [0.41 to 0.90]; P = 0.009) malaria. Overall, the PfCRT 76T and PfMDR1 86Y mutations were associated with decreased risk of symptomatic malaria, PfMDR1 1246Y was associated with increased risk of symptomatic malaria, and PfMDR1 184F was associated with decreased risk of severe malaria. These results offer insights into parasite genotypes in children with different presentations, although the basis for the identified associations is likely complex.


Subject(s)
Antimalarials , Drug Resistance , Malaria, Falciparum , Aminoquinolines/therapeutic use , Antimalarials/therapeutic use , Case-Control Studies , Child , Child, Preschool , Genotype , Humans , Infant , Malaria, Falciparum/drug therapy , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Uganda
14.
Article in English | MEDLINE | ID: mdl-31687034

ABSTRACT

BACKGROUND: Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS: Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-ß) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS: The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-ß than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-ß between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-ß level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS: The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.

15.
Article in English | MEDLINE | ID: mdl-30370374

ABSTRACT

BACKGROUND: Post-operative wound sepsis remains a surgical challenge of public health concern constituting approximately 20% of the health care-associated nosocomial infections. This study aimed at determining the prevalence and antimicrobial resistance patterns of bacterial pathogens isolated from post-operative wound infections at Mbale Regional Referral Hospital. MATERIALS AND METHODS: This was a descriptive cross-sectional study conducted from June to October 2015. Study participant samples were sub-cultured upon reception in the Microbiology laboratory and the isolated bacterial pathogens were analysed. Phenotypic antimicrobial susceptibility profiles were determined using the Kirby-Bauer method. Interpretation of the zone diameters was done following the Clinical and Laboratory Standards Institute guidelines. Phenotypic screening for Methicillin-resistant Staphylococcus aureus (MRSA) was performed using oxacillin (1 µg). D-test was also performed for phenotypic screening of inducible clindamycin resistant Staphylococcus aureus, Data were entered into Microsoft Excel and analysed using IBM SPSS statistics (version 16). RESULTS: Overall post-operative sepsis was 69/80 (86.2%) with Staphylococcus aureus as the most predominant organism 41/104 (39.4%) followed by Escherichia coli 22/104 (21.2%) and Klebsiella species 15/104 (14.4%). Of the 41/104 isolated Staphylococcus aureus, 27/41(65.9%) were MRSA strains and 5/41 (12.2%) were inducible clindamycin resistant Staphylococcus aureus strains. The isolated Staphylococcus aureus was resistant to multiple drugs though susceptible to vancomycin and clindamycin. In addition, none of the isolated Enterococci species was vancomycin resistant. Although most of the isolated Gram-negative organisms were sensitive to imipenem, resistance was observed for tetracycline, trimethoprim/sulphamethoxazole, and ceftriaxone. CONCLUSION: Staphylococcus aureus was the most common causative agent associated with postoperative sepsis with most of the strains being MRSA. Multi-drug resistance was observed in 63/104 (60.6%) of the isolated organisms in our study. Hence the need to better develop and strengthen antimicrobial stewardship programs as well as to understand the carriage of antimicrobial resistance genes among these organisms.

16.
J Vet Med ; 2018: 9126467, 2018.
Article in English | MEDLINE | ID: mdl-30159337

ABSTRACT

Antimicrobial resistance is an emerging problem in both humans and animals due to misuse and excessive use of drugs. Resistance in commensal E. coli isolates can be used to predict emergence of resistance in other gut microflora. The aim of this study is to determine the phylogenetic groups and antimicrobial resistance patterns of E. coli from healthy chickens in Uganda. The phylogenetic grouping of 120 fecal E. coli isolates from eastern and central Uganda was derived using the triplex PCR assay and their susceptibility patterns determined by agar disc diffusion method to 5 antimicrobial drugs. Most E. coli is segregated into phylogenetic group A comprising 84%, while 12% and 4% were in groups D and B1, respectively. Similarly most E. coli from central (87%) and eastern Uganda (82%) belonged to group A. Overall, 85 (70%) of E. coli were resistant to antimicrobial drugs, of which 72/101 (70%) are in PG A, 10 of 14 (71.4%) in PG D, and 3 of 5 (60%) in PG B1. Significantly, most of the isolates in PG A from both central (66.7%) and (60.6%) eastern Uganda were resistant to one antimicrobial. Resistance to tetracycline alone or in combination with other drugs for central and eastern Uganda in PG A is 51% and 55%, respectively. Multidrug resistance to tetracycline and ciprofloxacin or nalidixic acid was 10% and 18% in isolates from central and 10% and 12% in isolates from eastern region, respectively. Phylogenetic group A accounts for most of the E. coli in chicken from Uganda. No difference in the resistance rates between the phylogenetic groups of E. coli has been observed. The high prevalence of resistant E. coli strains from different phylogenetic groups in healthy chickens suggests antimicrobial drug selection pressure due to excessive drug in the rearing layer chickens.

17.
BMC Res Notes ; 10(1): 518, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29078807

ABSTRACT

OBJECTIVE: Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. RESULTS: Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.


Subject(s)
Genetic Variation , Trypanosoma brucei rhodesiense/genetics , Trypanosomiasis, African/pathology , Adolescent , Adult , Animals , Female , Humans , Male , Microsatellite Repeats , Phylogeny , Polymerase Chain Reaction , Trypanosomiasis, African/parasitology , Uganda , Young Adult
18.
BMC Genet ; 18(1): 71, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743254

ABSTRACT

BACKGROUND: Persons living with HIV/AIDS (PLWHA) are at an increased risk of suicide. Increased suicidal risk is a predictor of future attempted and completed suicides and has been associated with poor quality of life and poor adherence with antiretroviral therapy. Clinical risk factors have low predictive value for suicide, hence the interest in potential neurobiological correlates and specific heritable markers of suicide vulnerability. The serotonin transporter gene has previously been implicated in the aetiology of increased suicidal risk in non-HIV infected study populations and its variations may provide a platform for identifying genetic risk for suicidality among PLWHA. The present cross-sectional study aimed at identifying two common genetic variants of the serotonin transporter gene and their association with increased suicidal risk among human immunodeficiency virus (HIV)-positive adults in Uganda. RESULTS: The prevalence of increased suicidal risk (defined as moderate to high risk suicidality on the suicidality module of the Mini Neuropsychiatric Interview (M.I.N.I) was 3.3% (95% CI, 2.0-5.3). The 5-HTTLPR was found to be associated with increased suicidal risk before Bonferroni correction (p-value = 0.0174). A protective effect on increased suicidal risk was found for the 5-HTTLPR/rs25531 S A allele (p-value = 0.0046)- which directs reduced expression of the serotonin transporter gene (5-HTT). CONCLUSION: The S A allele at the 5-HTTLPR/rs25531 locus is associated with increased suicidal risk among Ugandan PLWHA. Further studies are needed to validate this finding in Ugandan and other sub-Saharan samples.


Subject(s)
HIV Infections/complications , HIV Infections/genetics , Polymorphism, Genetic , Serotonin Plasma Membrane Transport Proteins/genetics , Suicide , Adolescent , Adult , Cross-Sectional Studies , Female , Genotype , HIV Infections/psychology , HIV-1/isolation & purification , Humans , Male , Quality of Life , Risk Factors , Suicide/psychology , Surveys and Questionnaires , Uganda , Young Adult
19.
Parasit Vectors ; 9: 259, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27142001

ABSTRACT

BACKGROUND: The population structure and role of genetic exchange in African trypanosomes have been previously analyzed albeit with contradictory findings. To further investigate the role of genetic polymorphism on the population genetic structure of Trypanosoma b. rhodesiense, we hypothesized that parasite genotypes are clonal and stable over time. METHODS: We have undertaken a microsatellite marker analysis of T. b. rhodesiense isolates in a relatively new active HAT focus in Uganda (Kaberamaido-Dokolo-Amolatar) over a six-year period (2006-2012). We amplified six microsatellite markers by PCR directly from blood spotted FTA cards following whole genome amplification. RESULTS: The majority of loci demonstrated an excess of heterozygosity (Ho > He, F(IS) < 0). We identified 26 unique genotypes among the 57 isolates, accounting for 45.6% genotypic polymorphism. The presence of a high proportion of samples with repeated genotypes (54.4%, 31/57), disagreement with Hardy-Weinberg equilibrium, and significant linkage disequilibrium between loci pairs, provide evidence that T. b. rhodesiense isolates from this focus are clonal. Our results show low values of F(ST)' (0-0.115) indicating negligible genetic differentiation across temporal isolates. Furthermore, predominant genotypes isolated in 2006 were still detectable in 2012. CONCLUSIONS: Our findings confirm the notion that endemicity is maintained by stable genotypes rather than an influx of new genotypes. Our results have considerable importance in understanding and tracking the spread of sleeping sickness with significant implication to disease control.


Subject(s)
Microsatellite Repeats , Polymorphism, Genetic , Trypanosoma brucei rhodesiense/genetics , Gene Expression Regulation , Genotype , Polymerase Chain Reaction , Time Factors , Uganda
20.
Article in English | MEDLINE | ID: mdl-26807135

ABSTRACT

Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL
...