Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(15): 2622-2626, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30082069

ABSTRACT

Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.


Subject(s)
Drug Design , Indoles/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Crystallography, X-Ray , Ligands , Protein Kinase Inhibitors/chemical synthesis , Solubility , Structure-Activity Relationship
2.
J Med Chem ; 61(12): 5245-5256, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29847724

ABSTRACT

The lipid kinase phosphoinositide 3-kinase γ (PI3Kγ) has attracted attention as a potential target to treat a variety of autoimmune disorders, including multiple sclerosis, due to its role in immune modulation and microglial activation. By minimizing the number of hydrogen bond donors while targeting a previously uncovered selectivity pocket adjacent to the ATP binding site of PI3Kγ, we discovered a series of azaisoindolinones as selective, brain penetrant inhibitors of PI3Kγ. This ultimately led to the discovery of 16, an orally bioavailable compound that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Binding Sites , Biological Availability , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/administration & dosage , Humans , Hydrogen Bonding , Isoenzymes/antagonists & inhibitors , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phthalimides/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 59(13): 6293-302, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27366941

ABSTRACT

The hepatitis C viral proteins NS3/4A protease, NS5B polymerase, and NS5A are clinically validated targets for direct-acting antiviral therapies. The NS5B polymerase may be inhibited directly through the action of nucleosides or nucleotide analogues or allosterically at a number of well-defined sites. Herein we describe the further development of a series of thiophene carboxylate allosteric inhibitors of NS5B polymerase that act at the thumb pocket 2 site. Lomibuvir (1) is an allosteric HCV NS5B inhibitor that has demonstrated excellent antiviral activity and potential clinical utility in combination with other direct acting antiviral agents. Efforts to further explore and develop this series led to compound 23, a compound with comparable potency and improved physicochemical properties.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Thiophenes/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cyclohexanols/chemistry , Cyclohexanols/pharmacology , Dose-Response Relationship, Drug , Hepacivirus/enzymology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...