Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 44(3): 273-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20176398

ABSTRACT

It is known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, whereas hemokinin-1 (HK-1), a member of the same tachykinin family as SP, hardly induces thermal hyperalgesia; however, the underlying mechanism remains to be elucidated. Therefore, we aimed to clarify which amino acid of these peptides contributes to the induction of thermal hyperalgesia. When two chimera peptides between the N-terminal region of SP and the C-terminal region of HK-1, and vice versa, SP (1-5)/HK-1 and HK-1 (1-5)/SP, were intrathecally administered, SP (1-5)/HK-1 induced thermal hyperalgesia whereas HK-1 (1-5)/SP had hardly any effect; furthermore, thermal hyperalgesia was induced by only C-terminal fragments of HK-1 and SP. These findings indicate that the N-terminal region of HK-1 is involved in the non-induction of thermal hyperalgesia. Next, we synthesized and intrathecally administered these chimera peptides in which part of the N-terminal region of HK-1 was replaced with that of SP, and vice versa, and all synthesized peptides induced thermal hyperalgesia. Both SP (1-2)/HK-1 and HK-1 (1-4)/SP certainly induced thermal hyperalgesia, although HK-1 and HK-1 (1-5)/SP had hardly any effect; therefore, it is probable that Ser at the 2nd position and Arg at the 5th position of HK-1 may be involved in the non-induction of thermal hyperalgesia. Furthermore, peptides in which amino acid at the 3rd and/or 4th positions of HK-1 was replaced with that of SP were synthesized. Intrathecal administration of HK-1 (1-2,4-5)/SP, but not HK-1 (1-2,5)/SP and HK-1 (1-3,5)/SP, hardly induced thermal hyperalgesia. These findings indicate that three amino acids, Ser, Thr and Arg at the 2nd, 4th and 5th positions of HK-1, respectively, regulate the induction of thermal hyperalgesia by HK-1.


Subject(s)
Hyperalgesia/chemically induced , Tachykinins/physiology , Amino Acid Sequence , Animals , Arginine/physiology , Male , Neurotransmitter Agents/physiology , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/physiology , Serine/physiology , Substance P/pharmacology , Substance P/physiology , Tachykinins/chemistry , Tachykinins/pharmacology , Threonine/physiology
2.
Neuropeptides ; 42(1): 47-55, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055010

ABSTRACT

Desensitization is induced by the repeated administration of high doses of substance P (SP) or hemokinin-1 (HK-1). However, little information is available about the mechanisms involved in the induction of desensitization by these peptides. Thus, to characterize this desensitization, we examined the dose-dependent effect of these peptides, the effect of pretreatment with neurokinin 1(NK1) receptor antagonists, and the effect of pretreatment with inhibitors of protein kinases such as protein kinase A (PKA), protein kinase C (PKC), calcium/calmodulin kinase II (CaMKII) and mitogen-activated protein kinase kinase (MEK). The number of scratchings induced by 10(-3)M SP or HK-1 decreased following pretreatment with 10(-11)-10(-3)M SP or HK-1 with a marked reduction at 10(-3) and 10(-6)M SP or HK-1. The effect of NK1 receptor antagonists on desensitization induced by pretreatment with 10(-6)M SP was marked, whereas there was little effect of pretreatment with these antagonists on 10(-6)M HK-1-induced desensitization. Additionally, 10(-6)M SP- and HK-1-induced desensitization was attenuated by pretreatment with PKA, PKC and MEK inhibitors, except a CaMKII inhibitor that inhibited SP-induced desensitization. These results indicate that the receptor and kinases involved in HK-1-induced desensitization are partially different from those of SP.


Subject(s)
Desensitization, Immunologic , Pruritus/drug therapy , Pruritus/psychology , Tachykinins/pharmacology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Injections, Spinal , Linear Models , Male , Neurokinin-1 Receptor Antagonists , Protein Kinase Inhibitors/pharmacology , Quinuclidines/pharmacology , Rats , Rats, Sprague-Dawley , Tachykinins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...