Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 9(19): e15045, 2021 10.
Article in English | MEDLINE | ID: mdl-34617673

ABSTRACT

In native heart tissue, cardiac fibroblasts provide the structural framework of extracellular matrix (ECM) while also influencing the electrical and mechanical properties of cardiomyocytes. Recent advances in the field of stem cell differentiation have led to the availability of human pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) in addition to cardiomyocytes (iPSC-CMs). Here we use a novel 2D in vitro micropatterned platform that provides control over ECM geometry and substrate stiffness. When cultured alone on soft micropatterned substrates, iPSC-CFs are confined to the micropatterned features and remodel the ECM into anisotropic fibers. Similar remodeling and ECM production occurs when cultured with iPSC-CMs in a co-culture model. In addition to modifications in the ECM, our results show that iPSC-CFs influence iPSC-CM function with accelerated Ca2+ transient rise-up time and greater contractile strains in the co-culture conditions compared to when iPSC-CMs are cultured alone. These combined observations highlight the important role cardiac fibroblasts play in vivo and the need for co-culture models like the one presented here to provide more representative in vitro cardiac constructs.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/metabolism , Myocytes, Cardiac/metabolism , Cell Differentiation/physiology , Coculture Techniques , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology
2.
Biotechnol Bioeng ; 118(1): 442-452, 2021 01.
Article in English | MEDLINE | ID: mdl-32990953

ABSTRACT

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC-CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC-CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two-dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC-CMs.


Subject(s)
Electrophysiological Phenomena , Giant Cells/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism
3.
Exp Mech ; 59(9): 1235-1248, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31680699

ABSTRACT

Well-controlled 2D cell culture systems advance basic investigations in cell biology and provide innovative platforms for drug development, toxicity testing, and diagnostic assays. These cell culture systems have become more advanced in order to provide and to quantify the appropriate biomechanical and biochemical cues that mimic the milieu of conditions present in vivo. Here we present an innovative 2D cell culture system to investigate human stem cell-derived cardiomyocytes, the muscle cells of the heart responsible for pumping blood throughout the body. We designed our 2D cell culture platform to control intracellular features to produce adult-like cardiomyocyte organization with connectivity and anisotropic conduction comparable to the native heart, and combined it with optical microscopy to quantify cell-cell and cell-substrate mechanical interactions. We show the measurement of forces and displacements that occur within individual cells, between neighboring cells, and between cells and their surrounding matrix. This system has broad potential to expand our understanding of tissue physiology, with particular advantages for the study of the mechanically active heart. Furthermore, this technique should prove valuable in screening potential drugs for efficacy and testing for toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...