Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36850960

ABSTRACT

In recent years, the rapid development of deep learning approaches has paved the way to explore the underlying factors that explain the data. In particular, several methods have been proposed to learn to identify and disentangle these underlying explanatory factors in order to improve the learning process and model generalization. However, extracting this representation with little or no supervision remains a key challenge in machine learning. In this paper, we provide a theoretical outlook on recent advances in the field of unsupervised representation learning with a focus on auto-encoding-based approaches and on the most well-known supervised disentanglement metrics. We cover the current state-of-the-art methods for learning disentangled representation in an unsupervised manner while pointing out the connection between each method and its added value on disentanglement. Further, we discuss how to quantify disentanglement and present an in-depth analysis of associated metrics. We conclude by carrying out a comparative evaluation of these metrics according to three criteria, (i) modularity, (ii) compactness and (iii) informativeness. Finally, we show that only the Mutual Information Gap score (MIG) meets all three criteria.

2.
Sensors (Basel) ; 20(17)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872513

ABSTRACT

In this article, we present a new method of dehazing based on the Koschmieder model, which aims to restore an image that has been affected by haze. The difficulty is to improve the estimation of the transmission and the atmospheric light that generally suffer from the nonhomogeneity and the random variability of the environment. The keypoint is to enhance the dehazing of very bright regions of the image in order to improve the treatment of the sky that is often overestimated or underestimated compared to the rest of the scene. The approach proposed in this paper is based on two main contributions: 1. an L0 gradient optimization function weighted by a set of Gaussian filters and based on an iterative algorithm for optimization convergence. Unlike the existing methods using a single value of the atmospheric light for the whole image, our method uses a set of values neighboring an initial estimated value. The fusion is then applied based on Laplacian and Gaussian pyramids to combine all the relevant information from the set of images constructed from atmospheric lights and improves the contrast to recover the colors of the sky without any artifacts. Finally, the results are validated by three criteria: an autocorrelation score (ZNCC), a similarity measure (SSIM) and a visual criterion. The experiments carried out on two datasets show that our approach allows a better dehazing of the images with higher SSIM and ZNCC measurements but also with better visual quality.

3.
Appl Opt ; 57(9): 2087-2095, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29603998

ABSTRACT

Despite its extensive use, the traditional 4f Vander Lugt Correlator optical setup can be further simplified. We propose a lightweight correlation scheme where the decision is taken in the Fourier plane. For this purpose, the Fourier plane is adapted and used as a decision plane. Then, the offline phase and the decision metric are re-examined in order to keep a reasonable recognition rate. The benefits of the proposed approach are numerous: (1) it overcomes the constraints related to the use of a second lens; (2) the optical correlation setup is simplified; (3) the multiplication with the correlation filter can be done digitally, which offers a higher adaptability according to the application. Moreover, the digital counterpart of the correlation scheme is lightened since with the proposed scheme we get rid of the inverse Fourier transform (IFT) calculation (i.e., decision directly in the Fourier domain without resorting to IFT). To assess the performance of the proposed approach, an insight into digital hardware resources saving is provided. The proposed method involves nearly 100 times fewer arithmetic operators. Moreover, from experimental results in the context of face verification-based correlation, we demonstrate that the proposed scheme provides comparable or better accuracy than the traditional method. One interesting feature of the proposed scheme is that it could greatly outperform the traditional scheme for face identification application in terms of sensitivity to face orientation. The proposed method is found to be digital/optical implementation-friendly, which facilitates its integration on a very broad range of scenarios.


Subject(s)
Facial Recognition/physiology , Image Enhancement/methods , Optical Imaging/instrumentation , Pattern Recognition, Automated/methods , Artifacts , Biometry , Equipment Design , Humans , Image Interpretation, Computer-Assisted , Models, Anatomic , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...