Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(14): 144502, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22010722

ABSTRACT

Water is often viewed as a collection of monomers interacting electrostatically with each other. We compare the water proton momentum distributions from recent neutron scattering data with those calculated from two electronic structure-based models. We find that below 500 K these electrostatic models, one based on a multipole expansion, which includes the polarizability of the monomers, are not able to even qualitatively account for the sizable vibrational zero-point contribution to the enthalpy of vaporization. This discrepancy is evidence that the change in the proton well upon solvation cannot be entirely explained by electrostatic effects alone, but requires correlations of the electronic states on the molecules involved in the hydrogen bonds to produce the observed softening of the well.


Subject(s)
Protons , Water/chemistry , Computer Simulation , Hydrogen Bonding , Models, Chemical , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...